

Betriebs- und Installationshandbuch

SOLIVIA 6.0 EU T4 TL SOLIVIA 8.0 EU T4 TL SOLIVIA 10 EU T4 TL SOLIVIA 12 EU T4 TL SOLIVIA 15 EU G4 TL SOLIVIA 20 EU G4 TL SOLIVIA 30 EU T4 TL

Dieses Handbuch kann jederzeit geändert werden.

Die jeweils aktuellste Handbuchversion finden Sie auf unserer Website www.solar-inverter.com.

[©] Copyright – Delta Energy Systems (Germany) GmbH – Alle Rechte vorbehalten.
Dieses Handbuch wird zusammen mit unserem Gerät zur Verwendung durch die Endbenutzer ausgeliefert.
Die in diesem Handbuch enthaltenen technischen Anweisungen und Abbildungen sind als vertraullich zu behandeln und kein Teil darf ohne vorherige schriftliche Genehmigung durch Delta Energy Systems reproduziert werden. Wartungstechniker und Endbenutzer dürfen die hierin enthaltenen Informationen nicht offenlegen und dieses Handbuch nicht für andere Zwecke als solche verwenden, die eng mit der richtigen Verwendung des Geräts verbunden sind.
Alle Informationen und Spezifikationen können ohne vorherige Ankündigung geändert werden.

Inhaltsverzeichnis

1.	Allgem	ieine Sicherheitsanweisungen	.7
2.	Allgem	eine Informationen	.9
	2.1	Über dieses Handbuch	.9
	2.2	Sicherheitssymbole und -anweisungen	.9
	2.3	Gültigkeit	.9
	2.4	Produktbeschreibung	.9
	2.5	Einsatz und Verwendungszweck	10
	2.6	Zusätzliche Informationen	11
	2.7	Überwachung	12
3.	Vorber	eitung der Installation	13
	3.1	Anweisungen zur Installationsvorbereitung	13
	3.2	Überprüfen des Pakets	13
	3.3	Entpacken	14
	3.4	Identifizieren des Wechselrichters	15
4.	Produk	ktübersicht	17
	4.1	Abmessungen SOLIVIA 6.0 TL / 8.0 TL / 10 TL / 12 TL $$	17
	4.2	Abmessungen SOLIVIA 15 TL, 20 TL, 30 TL	18
	4.3	Einführung in die Funktionen	19
	4.3.1	LCD-Display und Tasten	21
	4.3.2	Eingangs-/Ausgangsschnittstelle des Wechselrichters	22
	4.3.3	Entlüftung	23
5.	Installa	ation	25
	5.1	Installationsort	25
	5.2	Montage	26
	5.3	Umgebungstemperatur	29
6.	Verkab	elung des Wechselrichters	31
	6.1	Vorbereitung der Verkabelung	31
	6.2	AC-Netzanschluss: 3 Phasen + N + Erde	33
	6.2.1	Erforderliche Schutzeinrichtungen und Kabelquerschnitte	34
	6.2.1.1	Fehlerstrom-Schutzeinrichtungen	.34
	6.2.1.2	Anforderungen an AC-Kabel	.35
	6.2.2	AC-Bajonettanschlüsse für 6.0 TL bis 20 TL	36
	6.2.3	AC-Bajonettanschlüsse für 30 TL	38

	6.2.4	AC-Verkabelungsbedingungen	. 40
	6.3	DC-Anschluss (von der PV-Anlage)	. 41
	6.3.1	Asymmetrische Lasten	. 43
	6.4	Wirkungsgrad	. 45
	6.5	Anschlüsse des Kommunikationsmoduls	. 49
	6.5.1	RS485-Verbindung	. 50
	6.5.2	Anschlüsse der Notausschaltung (EPO, Emergency Power Off)	. 51
	6.5.3	Relaissteuerungs-Anschluss	. 52
7.	Bedien	ung des PV-Wechselrichters	. 53
	7.1	Einstellung der Stromabschaltungsparameter	. 56
	7.1.1	Einstellungen der Stromabschaltungsvorrichtung(PDD, Power Discontion Device)	
	7.1.2	Netz- und Anlagenschutz	. 58
	7.2	Startseite	. 59
	7.3	LCD-Fließdiagramm	. 59
	7.3.1	Leistungsmessung	. 60
	7.3.2	Statistiken	. 60
	7.3.3	Protokolle	. 61
	7.3.3.1	Interne Daten	61
	7.3.3.2	Ereignisprotokoll (nur deutsche LVD- oder MVD-Netze)	61
	7.3.4	Aktuelle Daten	. 61
	7.3.5	$We chsel richter in formationen. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$. 62
	7.3.6	Einstellungen	
		Allgemeine Einstellungen	
	7.3.6.2	Installationseinstellungen	64
	7.3.6.3	Regelung der Wirk-/Blindleistung für DE LVD und DE MVD $\dots \dots$	65
		1 Leistungsbegrenzung	
		2 Leistung/Frequenz	
	7.3.6.3	3 Konstante cos φ	69
		$4\cos\phi(P)$	
		5 Konstante Blindleistung	
		6 Q(V)	
		7 Fault Ride-Through (FRT)	
		Regelung der Wirk-/Blindleistung für Italien/CEI 0-21 und Italien/A70.	
	7.3.6.4	1 Leistungsbegrenzung	76

Inhaltsverzeichnis

	7.3.6.4.	2 Leistung/Frequenz
		3 Konstante cosφ
	7.3.6.4.	4 cosφ(P)
	7.3.6.4.	5 Konstante Blindleistung
	7.3.6.4.	6 Q(V)
	7.3.6.4	7 Low Voltage Fault Ride Through (LVFRT)
	7.3.6.5	Blindleistungsregelung für Slowenien (SONDO) für Modelle 15 / 20 und 30 TL85
8.	Wartun	ıg
	8.1	Reinigen der Lüfter
	8.2	Austausch einer Lüftereinheit
	8.3	Reinigen der Entlüftungen
9.	Messw	erte und Meldungen
	9.1	Messwerte
	9.2	Meldungen
10.	Fehlerl	oehebung
11.	Außerb	petriebnahme
12.	Techni	sche Daten
	12.1	Spezifikation
	12.2	Empfehlungen für Kabel
	12.3	Erdungssysteme
	12.4	Modelle 15 TL und 20 TL mit älterem DC-Eingangsfeld
13.	Zertifik	ate

1. Allgemeine Sicherheitsanweisungen

Deutsch

Allgemeine Sicherheitsanweisungen

GEFAHR

Lebensgefahr durch gefährliche Spannung

Während des Betriebs liegt im Solar Wechselrichter eine gefährliche Spannung an. Diese gefährliche Spannung liegt noch 5 Minuten lang nach dem Trennen aller Stromquellen an.

- ▶ Öffnen Sie niemals den Solar Wechselrichter.
- ► Trennen Sie vor Installationsarbeiten den Solar Wechselrichter immer vom Netz, öffnen Sie den DC-Trennschalter und sichern Sie beides gegen Wiedereinschalten.
- ▶ Warten Sie mindestens 5 Minuten, bis die Kondensatoren entladen sind.

GEFAHR

Lebensgefahr oder Gefahr schwerer Verletzungen durch gefährliche Spannung

An den DC-Anschlüssen des Solar Wechselrichters können gefährliche Spannungen anliegen.

- ► Trennen Sie die PV-Module niemals ab, wenn sich der Solar Wechselrichter unter Last befindet.
- Schalten Sie zunächst das Netz ab, sodass der Solar Wechselrichter keine weitere Energie einspeisen kann.
- ▶ Öffnen Sie dann den DC-Trennschalter.
- ▶ Sichern Sie die DC-Anschlüsse gegen Berührung ab.
- Der Solar Wechselrichter kann nur sicher und normal betrieben werden, wenn Installation und Betrieb nach Maßgabe dieses Handbuchs erfolgen (siehe IEC 62109-5.3.3). Delta Energy Systems ist für Schäden, die durch Nicht-Einhaltung der Installations- und Betriebsanweisungen in diesem Handbuch entstehen, nicht verantwortlich. Beachten und befolgen Sie deshalb sämtliche Anweisungen in diesem Handbuch!
- Installations- und Inbetriebnahmearbeiten dürfen nur von qualifizierten Elektrotechnikern und anhand der in diesem Handbuch beschriebenen Installations- und Inbetriebnahmeanweisungen durchgeführt werden.
- Bevor am Solar Wechselrichter Arbeiten ausgeführt werden, muss der Solar Wechselrichter vom Netz und von den PV-Modulen getrennt werden.
- Der Solar Wechselrichter weist einen hohen Ableitstrom auf. Der Erdungsleiter muss vor der Inbetriebnahme angeschlossen werden.
- Entfernen Sie keine Warnschilder, die vom Hersteller am Solar Wechselrichter angebracht

Allgemeine Sicherheitsanweisungen

wurden

- Unsachgemäße Umgang mit dem Solar Wechselrichter kann zu Körperverletzungen und Sachschäden führen. Beachten und befolgen Sie deshalb alle in diesen Handbuch angegebenen allgemeinen Sicherheitshinweise und handlungsbezogenen Warnhinweise.
- Der Solar Wechselrichter enthält keine Komponenten, die vom Bediener oder Installateur zu warten oder zu reparieren sind. Sämtliche Reparaturen müssen von Delta Energy Systems durchgeführt werden. Durch Öffnen der Abdeckung erlischt die Garantie.
- Ziehen Sie keine Kabel ab, wenn der Solar Wechselrichter unter Belastung steht, da die Gefahr eines Störlichtbogens besteht.
- Um Blitzeinschlägen vorzubeugen, befolgen Sie die in Ihrem Land geltenden Regelungen zum Schutz vor Blitzeinschlägen.
- Die Oberfläche des Solar Wechselrichters kann sehr heiß werden.
- Der Solar Wechselrichter ist schwer. Der Solar Wechselrichter muss immer von zwei Personen angehoben und getragen werden.
- An die RS485 und die USB-Schnittstelle dürfen nur Geräte nach SELV (EN 69050) angeschlossen werden.
- Zur Gewährung des Schutzgrads IP65 müssen alle Anschlüsse ausreichend abgedichtet werden. Nicht genutzte Anschlüsse müssen mit den am Solar Wechselrichter angebrachten Abdeckkappen verschlossen werden.

2. Allgemeine Informationen

2.1 Über dieses Handbuch

Dieses Handbuch enthält detaillierte Informationen zu den technischen Daten, den Installationsschritten sowie sämtlichen zugehörigen Funktionseinstellungen der Solar-Wechselrichter. Installationstechniker müssen für die Installation einer Solaranlage gut geschult und qualifiziert sein sowie sämtliche Sicherheitsanweisungen und Installationsschritte befolgen.

2.2 Sicherheitssymbole und -anweisungen

2.3 Gültigkeit

ACHTUNG!

Wenn diese gefährliche Situation nicht vermieden wird, können Schäden an Maschinen und Geräten auftreten

WARNUNG!

Wenn diese gefährliche Situation nicht vermieden wird, können Unfälle mit schweren oder tödlichen Verletzungen die Folge sein

GEFAHR!

Wenn diese gefährliche Situation nicht vermieden wird, sind Unfälle mit schweren oder tödlichen Verletzungen die Folge.

WARNUNG! BRANDGEFAHR

Die Gehäusetemperatur kann während des Betriebs des Wechselrichters 70 °C überschreiten. In solchen Fällen besteht Brandgefahr. Nicht berühren!

In diesem Benutzerhandbuch sind die Installationsschritte, die Wartung, die technischen Daten sowie die Sicherheitsanweisungen für die angegebenen Solar-Wechselrichtermodelle der Marke DELTA beschrieben.

Angaben zur Software-Version finden Sie auf dem Display des Wechselrichters. Weitere Informationen finden Sie in Abschnitt 7.3.5 "Wechselrichterinformationen".

2.4 Produktbeschreibung

Die SOLIVIA TL sind 3-phasige, an das Versorgungsnetz anzuschließende Solar-Wechselrichter mit Blindleistungsregelung. Die Geräte wandeln Gleichstrom (DC) aus in PV-Anlagen gewonnenem Photovoltaikstrom in 3-Phasen-Wechselstrom (AC) um, um die Überkapazität zurück in das lokale Hauptstromnetz einzuspeisen. Dank bahnbrechender Technologien können ein großer Eingangsspannungsbereich (250 bis 1000 V) sowie eine hohe Leistungseffizienz erzielt werden, die auf einem benutzerfreundlichen Betriebsdesign beruht. Zudem sorgt die spezielle Auslegung des

Allgemeine Informationen

digitalen Signalprozessors (DSP, Digital Signal Processor) für einfachere Schaltkreise und weniger elektronische Bauteile. Beachten Sie bitte, dass dieses Gerät keine netzunabhängige Funktion unterstützt. Die 3-phasigen, an das Versorgungsnetz anzuschließenden Solar-Wechselrichter SOLIVIA TL besitzen die folgenden Hauptmerkmale:

Hauptmerkmale

- Nennleistung: 6/8/10/12/15/20 bzw. 30 kVA
- Leistungsausgleich (33/67) in asymmetrischen Gleichstrom-Ladesituationen
- Transformatorloser 3-Phasen-Solar-Wechselrichter (3 Phasen + N + Erde) mit Netzanbindung
- Maximaler Wirkungsgrad: bis zu 98,0 %
- Wirkungsgrad in Europa: bis zu 98,2 %
- Blindleistungskapazität (Kap. 0,80 Ind. 0,80)
- Geringer Eingangsklirrfaktor (THD <3 %) bei Volllast
- 2 MPP-Tracker
- Aufzeichnung von bis zu 30 Ereignisprotokollen
- 5-Zoll-LCD-Display
- Notausschaltung (EPO, Emergency Power Off)

Die Wechselrichter 8.0 TL/10 TL/12 TL/15 TL/20 TL und 30 TL erfüllen die neuesten Vorschriften und Normen in den einzelnen Ländern. Die vollständige Liste der erfüllten Normen finden Sie im Abschnitt 7 – Bedienung des PV-Wechselrichters.

2.5 Einsatz und Verwendungszweck

Der Betrieb eines Solar-Wechselrichters ist in der Abbildung 2.1 schematisiert. Aus Gründen der Energieeinsparung wandeln Solar-Wechselrichter den DC-Eingangsstrom einer PV-Anlage in 3-phasigen AC-Ausgangsstrom für das Stromnetz um.

Unsere Solar-Wechselrichter dürfen in den folgenden Ländern eingesetzt werden:

HINWEIS

Unterstützte Sprachen: Englisch, Italienisch, Französisch, Deutsch, Niederländisch und Spanisch

Unsere Solar-Wechselrichter dürfen nur für den vorgesehenen Verwendungszweck eingesetzt werden.

Zur sachgemäßen Verwendung eines Solar-Wechselrichters müssen folgende Kriterien erfüllt sein:

- Verwendung in stationären, an das lokale Stromnetz angeschlossenen PV-Anlagen zur Umwandlung des Gleichstroms einer PV-Anlage in Wechselstrom und Einspeisung in das Netz
- Verwendung innerhalb des angegebenen Leistungsbereichs (siehe Abschnitt 12.1 Technische Spezifikationen) und unter den beschriebenen Umgebungsbedingungen (Innenräume oder überdachte Außenbereiche mit Schutzklasse bis zu IP65)

Jede der folgenden Verwendungen gilt als unsachgemäß:

- Isolierter Betrieb: Der Solar-Wechselrichter verfügt über Anti-Inselbildungs- sowie weitere Überwachungsfunktionen.
- Verwendung in mobilen PV-Anlagen

2.6 Zusätzliche Informationen

Weitere detaillierte Informationen zu den SOLIVIA TL Wechselrichtern, Produktinformationen und Unterstützung finden Sie auf unserer Website unter http://www.solar-inverter.com.

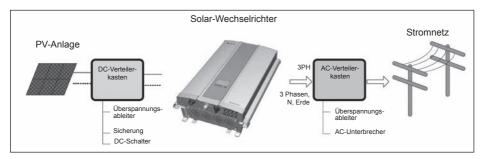


Abb. 2.1.: Betriebsschema einer Solar-Wechselrichteranlage

2.7 Überwachung

SOLIVIA TL Wechselrichter bieten ein Display zur Überwachung der Leistung am Standort, wobei die Überwachung auch im Fernbetrieb möglich ist. Die Wechselrichter verfügen nicht nur über Solar Log und Meteocontrol, sondern auch über die firmeneigene Überwachungslösung SOLIVIA Monitor. Weitere Informationen zu den Fernüberwachungsoptionen hält Ihr Delta-Händler für Sie bereit.

SOLIVIA Monitor G2 gewährt den zuverlässigen Betrieb und die maximale Leistung von PV-Anlagen. Das System ist mit allen SOLIVIA Strang-Wechselrichtermodellen von Delta kompatibel. Die Gesamtlösung besteht aus SOLIVIA GW M1 G2, einem als Schnittstelle fungierenden Gateway und einem Online-Portal, das Benutzern unter http://monitoring.solar-inverter.com zur Verfügung steht. Sowohl Echtzeit-Datenberichte als auch Verlaufsdatenstatistiken können generiert und als *.CSV- oder Excel-Datei exportiert werden. Automatisierte Warnmeldungen informieren das Bedienpersonal und garantieren die Rentabilität der Solarinvestition. Der Installateur kann Kundensysteme auch verwalten, um so jederzeit rasch einen Überblick über den Systemstatus zu erhalten. Zudem erhält der Benutzer nicht nur Informationen über das Wetter, sondern dank dem integrierten News-Feed auch die neuesten Nachrichten.

Weitere Informationen über technische Funktionen und Leistungsmerkmale finden Sie auf unserer Firmenwebsite unter folgendem Link: http://www.solar-inverter.com/eu/en/SOLIVIA-monitoring-system.htm.

3. Vorbereitung der Installation

3.1 Anweisungen zur Installationsvorbereitung

Da sich die Installationsumgebungen stark unterscheiden können, wird dringend empfohlen, dieses Handbuch vor der Installation sorgfältig zu lesen. Sämtliche Schritte der Installation und Inbetriebnahme müssen von einem professionellen und gut geschulten Techniker durchgeführt werden

3.2 Überprüfen des Pakets

Während des Transports können unvorgesehene Situationen eintreten. Überprüfen Sie daher zunächst, ob der Verpackungskarton Schäden aufweist. Überprüfen Sie nach dem Öffnen des Pakets das Außengehäuse und die inneren Teile des Wechselrichters, indem Sie

- auf der rechten Seite des Wechselrichtergehäuses überprüfen, ob die Modellnummer und die technischen Daten mit dem von Ihnen bestellten Modell übereinstimmen.
- 2. überprüfen, ob sich Komponenten gelöst haben,
- 3. überprüfen, ob alle Zubehörteile im Paket enthalten sind. Die Standard-Zubehörteile sind unten in der Tabelle angegeben:

Artikel	Menge	Beschreibung
TL Wechselrichter	1	6 kVA, 8 kVA, 10 kVA, 12 kVA,15 kVA, 20 kVA oder 30 kVA Solar-Wechselrichter
Benutzerhandbuch	1	Benutzerinstallation und Betriebsanweisungen
AC-Stecker	1	Anschluss für AC-Verbindung
Montageplatte	1	Blech für Wandbefestigung des Wechselrichters

Tabelle 3.1.: Paketinhalt

HINWEIS

Bei Schäden im Inneren oder am Äußeren des Wechselrichters oder bei fehlendem oder beschädigtem Standardzubehör erhalten Sie Unterstützung von Ihrem Wechselrichter-Händler.

3.3 Entpacken

- 1. Öffnen Sie wie unten abgebildet die Oberseite des Kartons.
- 2. Entnehmen Sie das obenauf liegende Verpackungsmaterial.
- Heben Sie den Wechselrichter aus der Verpackung und bewahren Sie die Verpackung für den Fall der Rücksendung auf.

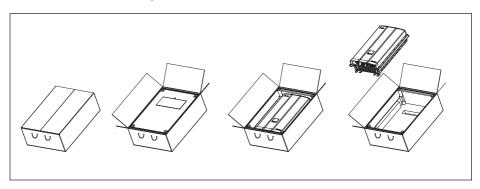


Abb. 3.1.: Schritte zum Entpacken

3.4 Identifizieren des Wechselrichters

Sie können die Modellnummer den Informationen auf dem Etikett entnehmen. Auf dem Etikett sind die Modellnummer, technische Daten sowie die Seriennummer angegeben. Das Etikett finden Sie anhand der Abbildung unten.

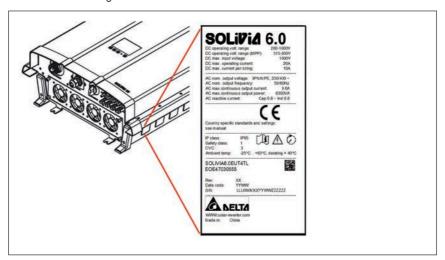


Abb. 3.2.: Typenschild 6.0 TL

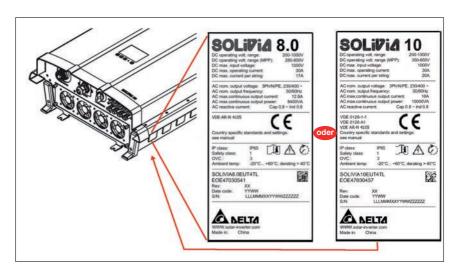


Abb. 3.3.: Typenschild 8.0 TL und 10 TL

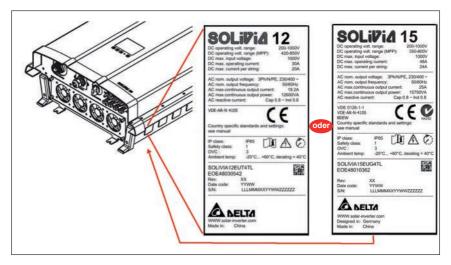
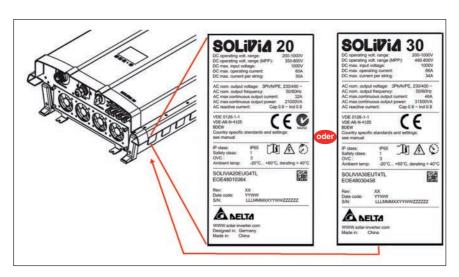
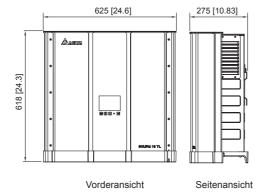
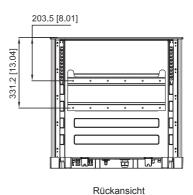


Abb. 3.4.: Typenschild 12 TL und 15 TL


Abb. 3.5.: Typenschild 20 TL und 30 TL

4. Produktübersicht

4.1 Abmessungen SOLIVIA 6.0 TL / 8.0 TL / 10 TL / 12 TL

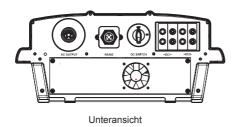
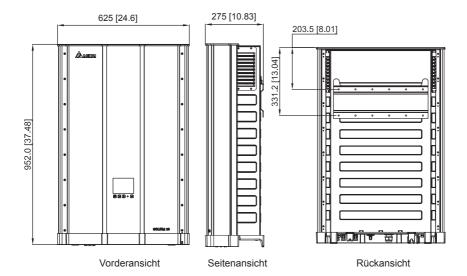



Abb. 4.1.: Abmessungen eines SOLIVIA 6.0 TL, 8.0 TL, 10 TL, 12 TL Wechselrichters

4.2 Abmessungen SOLIVIA 15 TL, 20 TL, 30 TL

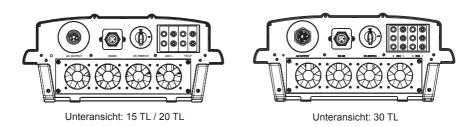


Abb. 4.2.: Abmessungen eines SOLIVIA 15 TL / 20 TL oder 30 TL Wechselrichters

18

4.3 Einführung in die Funktionen

Die Außenmerkmale Ihres Wechselrichters können Sie der Abbildung 4.3 bzw. 4.4 entnehmen, die detaillierte Beschreibung den Abschnitten 4.3.1 bis 4.3.3.

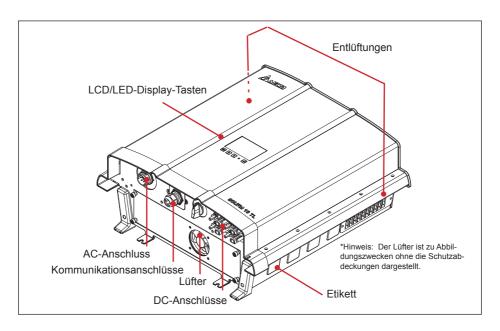


Abb. 4.3.: Außenansicht eines 6.0 TL, 8.0 TL, 10 TL und 12 TL Wechselrichters

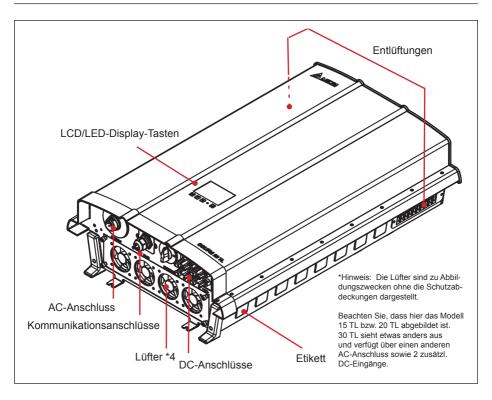


Abb. 4.4.: Außenansicht eines 15 TL / 20 TL oder 30 TL Wechselrichters

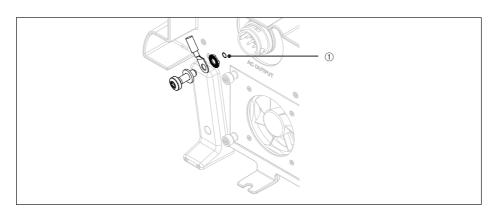


Abb. 4.5.: Erdungs-Kit

Der Rahmen besitzt eine vorgefertigte Bohrung ① zur Aufnahme einer Erdungsschraube, siehe Abbildung. Das maximale Drehmoment der M6-Erdungsschraube beträgt 4,4 Nm. Um die Mitte der Öffnung für die Erdungsschraube sind kreisförmig 15 mm der Oberfläche unlackiert, um bei der Installation des Erdungs-Kits eine sichere Erdungsverbindung zu ermöglichen.

4.3.1 LCD-Display und Tasten

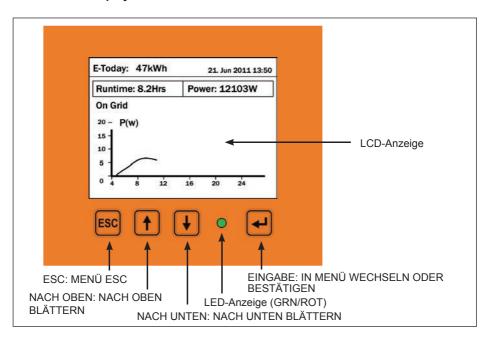


Abb. 4.6.: LCD-Anzeige- und Steuerfeld

4.3.2 Eingangs-/Ausgangsschnittstelle des Wechselrichters

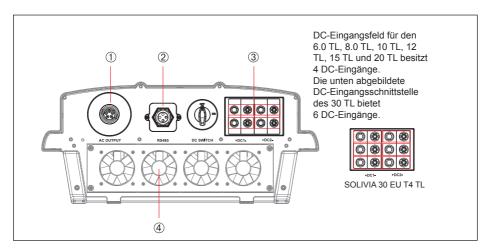


Abb. 4.7.: Eingangs-/Ausgangsschnittstelle

Nr.	Bezeichnung	6.0 TL	8.0 TL	10 TL	12 TL	15 TL	20 TL	30 TL
1	AC-Anschluss	400 V _{AC}						500 V _{AC}
2	Kommunikation	2 × RS4	185, 1 × E	PO, 2 ×	Relaisste	uerung		
3	DC-Anschlüsse	4						6
4	Lüfter	1				4		

HINWEIS

Die Lüfter sind zu Abbildungszwecken ohne die Schutzabdeckungen dargestellt.

4.3.3 Entlüftung

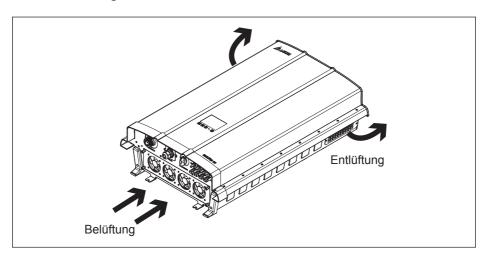


Abb. 4.8.: Entlüftung

Im unteren Teil des Wechselrichters befinden sich 4 synchron geschaltete Lüfter. Wenn ein Lüfter blockiert oder defekt ist, tritt ein Lüfterausfall auf, der einen Stromabfall verursacht. Wenn Sie den Verdacht haben, dass ein Problem mit einem Lüfter vorliegt, wenden Sie sich an die Delta-Support-Hotline.

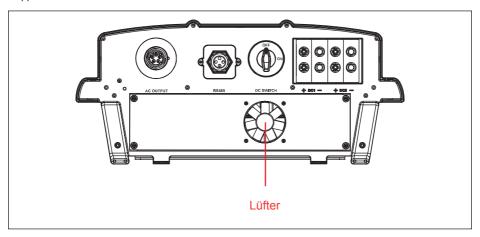


Abb. 4.9.: Lüfterregelung 6.0 TL / 8.0 TL / 10 TL / 12 TL

Produktübersicht

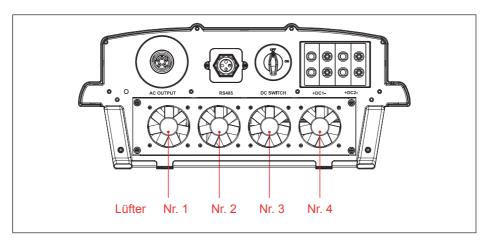


Abb. 4.10.: Lüfterregelung 15 TL und 20 TL

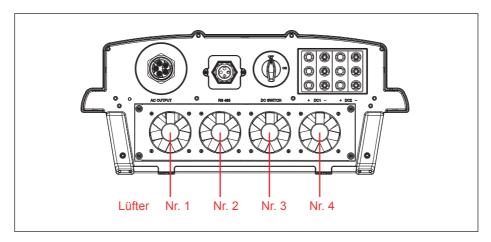


Abb. 4.11.: Lüfterregelung 30 TL

5. Installation

5.1 Installationsort

SOLIVIA TL Wechselrichter können in Innenräumen und aufgrund der Schutzklassen IP65 und IP55 des Gehäuses auch in geschützten Außenbereichen installiert werden. Siehe Abb. 5.1 für weitere Erläuterungen der Schutzklassen.

WARNUNG

Wenn die folgenden Anweisungen nicht sorgfältig ausgeführt werden, können Unfälle mit schweren oder tödlichen Verletzungen die Folge sein.

- Installieren Sie das Gerät nicht in der Nähe von/auf entzündbaren Gegenständen.
- Installieren Sie das Gerät nicht an einem Standort, zu dem Personen problemlos Zugang erlangen/den sie problemlos berühren können.
- Montieren Sie das Gerät fest an einer soliden/ebenen Wand.
- ▶ Um die Sicherheit der Installateure zu gewährleisten, muss die Installation von mindestens zwei Personen durchgeführt werden.
- Wenn ein SOLIVIA TL bewegt wird, darf der Installateur nicht unter den Maschinen für die Materialhandhabung stehen.
- ▶ Staub kann die Geräteleistung beeinträchtigen.

WARNUNG

Gemäß der australischen/neuseeländischen Norm AS/NZS 5033:2005 darf die Maximalspannung von PV-Anlagen bei einer Installation in Wohnstätten höchstens 600 V betragen. Wenn die Maximalspannung bei Installationen außerhalb von Wohnstätten 600 V übersteigt, ist die gesamte PV-Anlage einschließlich der dazugehörigen Verkabelungen und Schutzvorrichtungen vor unbefugtem Zutritt zu sichern.

ACHTUNG

Schäden an Maschinen und Geräten können auftreten.

 Installieren Sie das Gerät nicht an einem Standort, der direktem Sonnenlicht ausgesetzt ist.

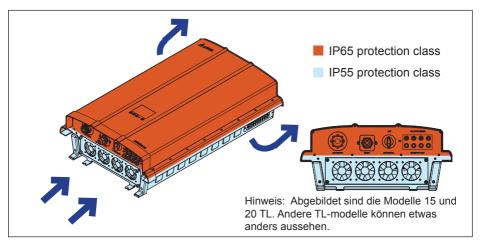


Abb. 5.1.: Schutzklassen

HINWEIS

Die Lüfter sind zu Abbildungszwecken ohne die Schutzabdeckungen dargestellt.

Der obere Teil des Wechselrichters, oben dunkler dargestellt, ist gegen den unteren Teil versiegelt und entspricht der Schutzklasse IP65. Der untere Teil des Wechselrichters enthält die Kühlmechanismen und entspricht der Gehäuseschutzklasse IP55.

5.2 Montage

Dieses Gerät wird mit einem Wandmontagesystem verwendet. Die Installation muss senkrecht und mit dem AC-Stecker nach unten erfolgen. Installieren Sie das Gerät nicht an einer schrägen Wand. Die Abmessungen der Montageplatte sind in den folgenden Abbildungen angegeben. Zum Anbringen der Montageplatte an der Wand werden 12 M6-Schrauben benötigt. Befestigen Sie die Montageplatte sicher an der Wand, bevor Sie den Wechselrichter an der Montageplatte anbringen.

HINWEIS

Stellen Sie sicher, dass Sie die richtigen Befestigungselemente für das Material verwenden, an dem Sie die Montageplatte des Wechselrichters anbringen.

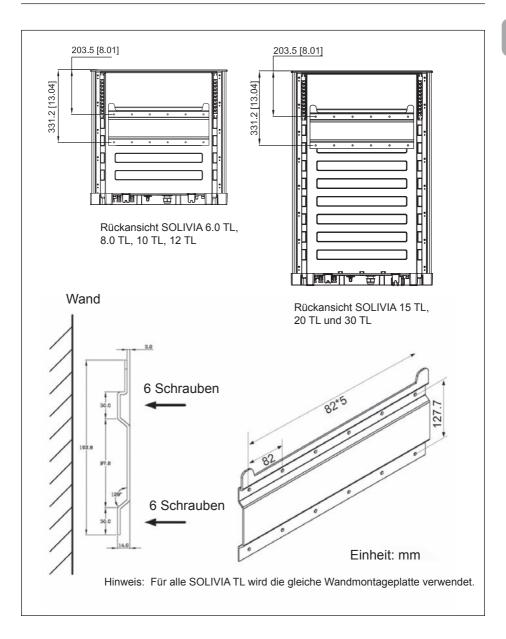


Abb. 5.2.: Befestigung der Montageplatte an der Wand

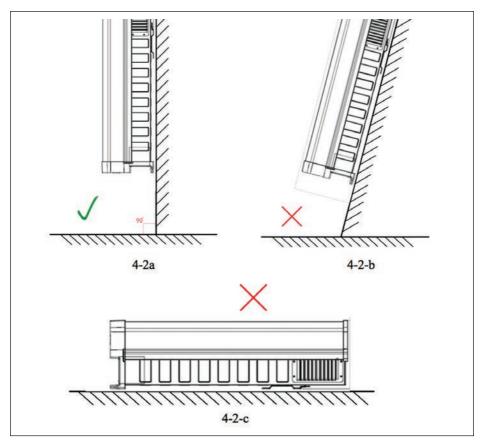


Abb. 5.3.: Richtige und falsche Installation

ACHTUNG

Schäden an Maschinen und Geräten können auftreten.

- ► Halten Sie bei der Installation einzelner/mehrerer DELTA Solar-Wechselrichteranlagen ausreichenden Abstand ein.
- ▶ Installieren Sie Solar-Wechselrichter auf Augenhöhe, um ein problemloses Ablesen der Betriebs- und Parametereinstellungen zu ermöglichen.
- ► Installieren Sie Solar-Wechselrichter an einem sauberen und nicht geschlossenen Ort.
- ▶ Die Umgebungstemperatur muss zwischen -20°C und +60 °C liegen.

Für den Betrieb des Produkts muss ausreichend Platz gelassen werden, wie in Abbildung 5-4 dargestellt. Bei Bedarf sollte der Installateur den Abstand vergrößern, um eine optimale Anlagenleistung zu ermöglichen.

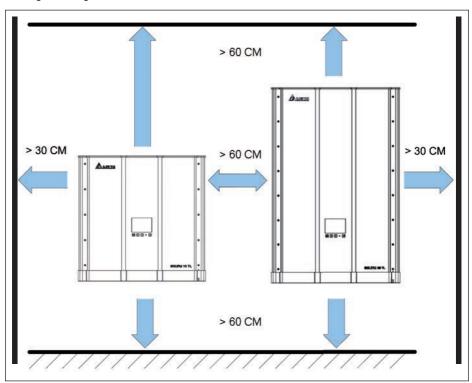


Abb. 5.4.: Richtiger Installationsabstand

5.3 Umgebungstemperatur

Der Solar-Wechselrichter kann in einer Umgebungstemperatur zwischen -20 °C und +60 °C betrieben werden. Das folgende Diagramm veranschaulicht, wie der vom Solar-Wechselrichter gelieferte Strom je nach Umgebungstemperatur automatisch reduziert wird.

Das Gerät muss an einem gut belüfteten, kühlen und trockenen Ort installiert werden.

Installation

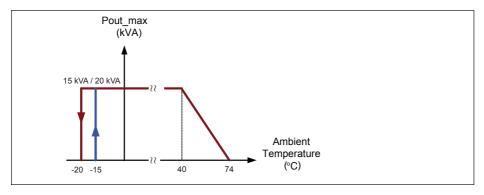


Abb. 5.5.: Abregelungskurve

6. Verkabelung des Wechselrichters

6.1 Vorbereitung der Verkabelung

- Überprüfen Sie zur Vermeidung von Unfällen, ob Gleich- und Wechselstrom des PV-Wechselrichters abgeschaltet sind.
- Überprüfen Sie, ob Eingang und Ausgang der PV-Wechselrichter-Verkabelung klar bezeichnet sind. Stellen Sie sicher, dass Wert, Polarität, Spannung und Phase korrekt angegeben sind.
- Die Verkabelungsschritte für ein PV-System sind in den Abbildungen 6-1 und 6-2 veranschaulicht. Die Details der Verkabelung sind in den folgenden Abschnitten beschrieben.
 - Bei erdfreiem DC-Eingang ist kein externer Transformator erforderlich. Die Anschlussweise ist in Abbildung 6-1 dargestellt. Der Wechselrichter kann parallel geschaltete DC-Eingänge (1 MPP-Tracker) oder getrennte DC-Eingangsanschlüsse (2 MPP-Tracker) aufnehmen
 - Wird eine asymmetrische DC-Last erkannt, wird diese vom Solar-Wechselrichter automatisch ausgeglichen, um eine optimale Leistung sicherzustellen. Einzelheiten dazu finden Sie in Abschnitt 6.3.1. Das ist bei zwei Modulsträngen auf Dachoberflächen mit unterschiedlichen Ausrichtungen hilfreich, wie z. B. bei einer Gaube mit nördlich und südlich ausgerichteten Flächen.

ACHTUNG

Es können Schäden an Maschinen und Geräten auftreten.

▶ Wenn der DC-Eingang eine positive oder negative Erdung ist, müssen alle Stränge parallel geschaltet und dann an die Wechselrichter angeschlossen werden. Zusätzlich muss auf der AC-Seite ein externer Trenntransformator installiert werden. Andernfalls entstehen Schäden und der Wechselrichter funktioniert nicht ordnungsgemäß. Unterschiedliche DC-Eingangskabelanforderungen erfordern auch unterschiedliche Isolierungserkennungs-Einstellungen. Weitere Informationen zu den Einstellungen finden Sie unter "7.3.6.2 Install Settings".

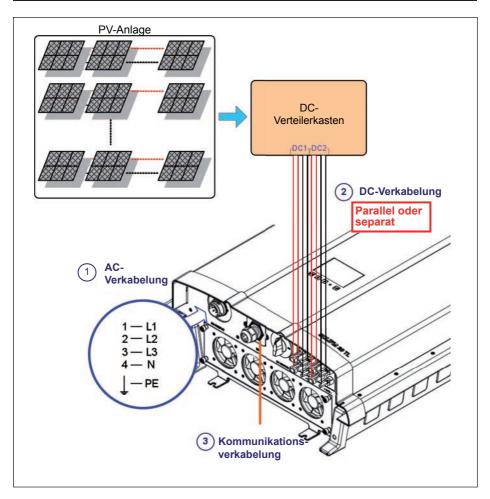


Abb. 6.1.: Anschluss des Systems bei erdfreien DC-Eingängen

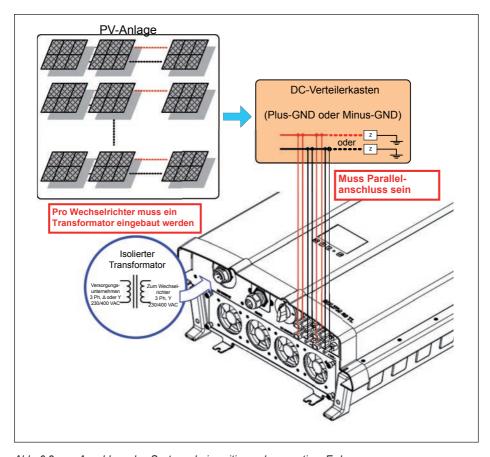
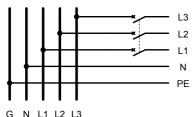


Abb. 6.2.: Anschluss des Systems bei positiver oder negativer Erdung

6.2 AC-Netzanschluss: 3 Phasen + N + Erde

WARNUNG


Unfälle mit schweren oder tödlichen Verletzungen können die Folge sein!

► Stellen Sie vor dem Anschluss der AC-Verkabelung sicher, dass der 3-Phasen-Wechselstrom abgeschaltet ist.

6.2.1 Erforderliche Schutzeinrichtungen und Kabelquerschnitte

Verwenden Sie den richtigen vorgeschalteten Unterbrecher, um den Wechselrichter gemäß der Tabelle zu schützen:

Modell	Vorgeschalteter Unterbrecher (Typ B)
SOLIVIA 6.0 TL	16 A
SOLIVIA 8.0 TL	16 A
SOLIVIA 10 TL	20 A
SOLIVIA 12 TL	25 A
SOLIVIA 15 TL	32 A
SOLIVIA 20 TL	40 A
SOLIVIA 30 TL	63 A

Zum AC-Stecker des Solar-Wechselrichters

6.2.1.1 Fehlerstrom-Schutzeinrichtungen

SOLIVIA TL Wechselrichter können aufgrund ihrer Ausführung keine DC-Restströme einspeisen. Diese Anforderung erfüllen Sie in Übereinstimmung mit DIN VDE 0100-712.

Die Möglichkeiten von Fehlern wurden untersucht, ohne die integrierte Reststrom-Überwachungseinrichtung (FI-Schutzschalter) zu berücksichtigen. Bei Untersuchung dieser Fehler nach derzeit gültigen Installationsstandards kann keine Gefahr in Zusammenhang mit einer vorgeschalteten Fehlerstrom-Schutzeinrichtung Typs A auftreten. Daher können Fehler ausgeschlossen werden, die aufgrund des Wechselrichters andernfalls den Einsatz einer Fehlerstrom-Schutzeinrichtung Typs B erfordern würden.

Die integrierte, allstromsensitive Reststrom-Überwachungseinrichtung (Fl-Schutzschalter) bietet zusätzliche Sicherheit. Bei allen oben genannten transformatorlosen Wechselrichtern von Delta können RCDs des Typs A verwendet werden.

Sollte ein externer FI-Schutzschalter erforderlich sein, empfehlen wir die Verwendung eines FI-Schutzschalters Typ A, siehe Tabelle. Befolgen Sie jedoch stets die spezifischen Regelungen Ihres Landes

		6.0 TL	8.0 TL	10 TL	12 TL	15 TL	20 TL	30 TL
minimaler Auslösestrom des FI-Schutzschalters	mA	100	100	100	100	300	300	300
Anzahl Wechselrichter 1)		2	2	1	1	2	2	1

¹⁾ Maximale Anzahl Wechselrichter, die mit dem angegebenen FI-Schutzschalter abgesichert werden können.

HINWEIS

Die Höhe des Auslösestroms des FI-Schutzschalters ist abhängig von der Gestaltung der PV-Installation und der Anzahl der angeschlossenen Wechselrichter. Der Auslösestrom des FI-Schutzschalters darf jedoch nicht kleiner als der angegebene minimale Auslösestrom sein.

6.2.1.2 Anforderungen an AC-Kabel

Schließen Sie richtig bemessene Kabel an den richtigen Polen an (siehe Tabelle unten).

Modell	AC-Anschluss*	Nenn- strom	Min./max. zulässige Kabelgröße	ulässige sige Kabelgröße	
6.0 TL bis 20 TL	Amphenol C16-3	≤40 A	11 mm/20 mm	4 mm ² / 8 mm ² (12 AWG/9 AWG)	≥ 0,7 Nm (7 kg-cm)
30 TL	Amphenol PPC AC 24	≤60 A	22 mm/32 mm	10 mm ² / 16 mm ² (8 AWG/6 AWG)	M4 Schrauben ≥ 0,9 Nm (10 kg-cm) M6 Schrauben ≥ 3 Nm (30 kg-cm)

^{*} Beachten Sie die aktuellen Informationen zu Amphenol und AC-Anschlüssen

Tabelle 6.1.: Kabelquerschnitte und Drehmomente für AC-Anschlüsse

AC-Kabel können in 3 Phasen (L1, L2, L3), N und Erde getrennt werden. Die folgenden Erdungskonfigurationen sind zulässig. IT ist nicht zulässig. Im Anhang finden Sie weitere Erläuterungen zu diesen Erdungssystemen.

TN-S	TN-C	TN-C-S	TT	IT
Ja	Ja	Ja	Ja	Nein

Tabelle 6.2.: Zulässige Erdungssysteme

HINWEIS

TT wird nicht empfohlen. Stellen Sie sicher, dass die Spannung von N sehr nahe an Erde ist ($<20~V_{\rm rms}$).

6.2.2 AC-Bajonettanschlüsse für 6.0 TL bis 20 TL

AC-Bajonettanschlüsse sind für Kabelummantelungsdurchmesser zwischen 11 und 20 mm zulässig. Zum Installieren eines AC-Kabels isolieren Sie zunächst wie unten dargestellt die spannungsfreie Leitung und die Kabelenden ab. Folgen Sie dann den Schritten in Abbildung 6.5, um den Anschluss zwischen Kabel und Bajonett herzustellen.

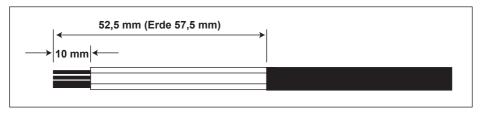


Abb. 6.3.: Anforderungen zur Abisolierung des AC-Kabels von 6.0 TL bis 20 TL

HINWEIS

Bei Leitungen mit einem Kabelummantelungsdurchmesser von 16 bis 20 mm muss die Kabeleinfassung entsprechend angepasst werden. Schneiden Sie dazu den inneren Teil des blauen Dichtungsring heraus.

Der in Abbildung 6.5 gezeigte Amphenol C-Anschluss kann mit dem AC-Stecker eines Wechselrichters vom Typ 6.0 TL bis 20 TL verbunden werden. Wenn Sie den Anschluss geöffnet haben, achten Sie auf die richtige Polarität, um eine ordnungsgemäße AC-Verkabelung herzustellen (dieses Produkt ermöglicht eine positive wie eine negative Phasenfolge). Daher kann die Reihenfolge von L1 bis L3 angepasst werden. N- und Erdungsanschlüsse müssen hergestellt werden.

Abb. 6.4.: Dichtungsring des AC-Steckers für AC-Anschluss 6.0 TL bis 20 TL

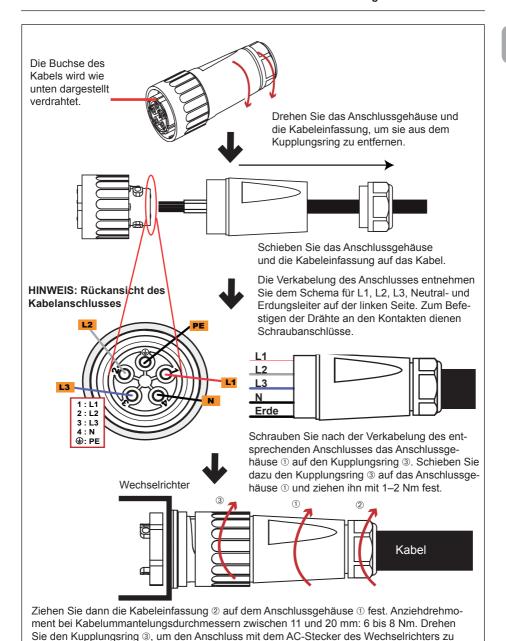


Abb. 6.5.: AC-Anschluss 6.0 TL bis 20 TL

verbinden.

ACHTUNG

Es können Schäden an Maschinen und Geräten auftreten.

Beachten Sie die Polanordnung des AC-Bajonettanschlusses. Eine falsche Anordnung kann zur Zerstörung des Geräts führen. Das Poldiagramm in Abbildung 6.5 zeigt die Verbindungen im AC-Anschluss.

HINWEIS

Stellen Sie sicher, dass die Leitung mit einer Zugentlastungsvorrichtung ausgestattet ist. Bei Verwendung von Kabeln mit einem Durchmesser von weniger als 13 mm (11 bis 13 mm Durchmesser erfordern eine Zugentlastung) muss das Kabel direkt hinter dem Anschluss entlastet werden.

6.2.3 AC-Bajonettanschlüsse für 30 TL

AC-Bajonettanschlüsse für 30 TL sind für Kabelummantelungsdurchmesser zwischen 22 und 32 mm zulässig. Zum Installieren eines AC-Kabels isolieren Sie zunächst wie unten dargestellt die spannungsfreie Leitung und die Kabelenden ab. Folgen Sie dann den Schritten in Abbildung 6.7, um den Anschluss zwischen Kabel und Bajonett herzustellen.

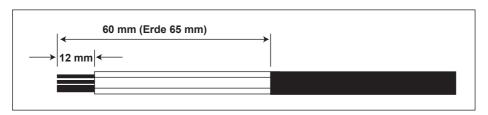


Abb. 6.6.: Anforderung zur Abisolierung des AC-Kabels von 30 TL

Der in Abbildung 6.7 gezeigte Amphenol PPC AC 24-Anschluss kann mit dem AC-Stecker des Wechselrichters TL 30 verbunden werden. Wenn Sie den Anschluss geöffnet haben, achten Sie auf die richtige Polarität, um eine ordnungsgemäße AC-Verkabelung herzustellen (dieses Produkt ermöglicht eine positive wie eine negative Phasenfolge). Daher kann die Reihenfolge von L1 bis L3 angepasst werden. N- und Erdungsanschlüsse müssen hergestellt werden.

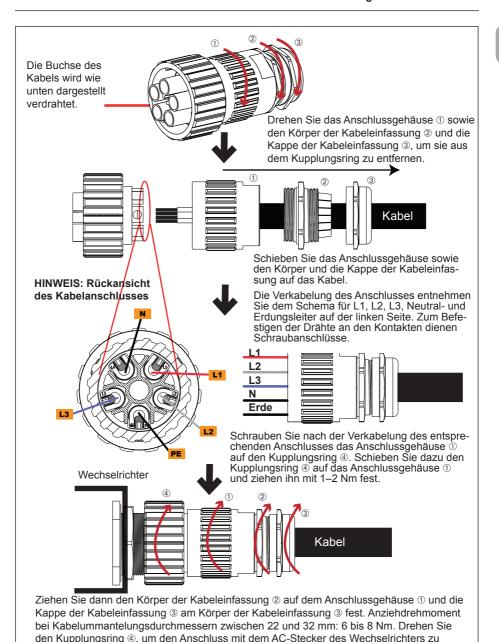


Abb 6.7 · AC-Anschluss für 30 TI

verbinden.

6.2.4 AC-Verkabelungsbedingungen

Die Verbindung mit dem Amphenol-AC-Anschluss kann bei allen Modellen mit einem flexiblen oder einem starren Kabel mit einem Kupferleiter hergestellt werden, der den richtigen Querschnitt gemäß Tabelle 6.1 aufweist und eine Installationsbedingung besitzt, die einen Korrekturfaktor gleich eins ergibt. Das AC-Kabel muss mindestens durch einen Unterbrecher des Typs B 40 Amp geschützt werden und bei 30 TL mindestens durch einen Unterbrecher des Typs B 60 Amp.

Dieser Anschluss wurde für Verbindungen mit Kupferdrähten entwickelt (bei anderen Anwendungen wenden Sie sich an Amphenol). Der Querschnitt des Kabels muss unter Berücksichtigung des verwendeten Materials, der thermischen Bedingungen, der Kabellänge, des Installationstyps und des AC-Spannungsabfalls berechnet werden.

Notieren Sie die Kabellänge und den Kabelquerschnitt, da andernfalls das Risiko unerwünschter Temperaturanstiege und Leistungsverluste besteht. In manchen Ländern (z. B. Frankreich, Deutschland und Australien) müssen bestimmte Anforderungen an die Anlageninstallation befolgt werden (UTE 15712-1, VDE 0100 712, AS/NZS 5033:2005). In dieser Empfehlung sind Mindest-Kabelquerschnitte und Schutzmaßnahmen gegen Überhitzungen durch hohe Stromstärken festgelegt. Befolgen Sie unbedingt die spezifischen Anforderungen Ihres Landes.

Zur Sicherheit Ihrer Installation und zur Sicherheit der Bediener installieren Sie bitte die geforderten Sicherheits- und Schutzeinrichtungen, die für Ihre Installationsumgebung gelten (z. B. automatische Unterbrecher und/oder Überstromschutz-Einrichtungen).

WARNUNG

Unfälle mit schweren oder tödlichen Verletzungen können die Folge sein!

Delta kann weder für Sachschäden noch für Körperverletzungen haftbar gemacht werden, die auf eine bestimmungswidrige Verwendung des Geräts oder auf ungenehmigte Änderungen von Wechselrichterparametern zurückzuführen sind.

Solar-Wechselrichter müssen über den Erdungsleiter des AC-Anschlusses geerdet werden. Schließen Sie dazu den Erdungsleiter am dafür vorgesehenen Anschluss an.

Der AC-Anschluss ist vor unbeabsichtigter Trennung durch einen Clip-Mechanismus geschützt, der mit einem Schraubendreher gelöst werden kann.

Die AC-Spannung muss folgende Werte einhalten:

L1-N: 230 V_{AC}

L2-N: 230 V_{AC}
 L3-N: 230 V_{AC}

6.3 DC-Anschluss (von der PV-Anlage)

WARNUNG

Unfälle mit schweren oder tödlichen Verletzungen können die Folge sein!

- Achten Sie bei der DC-Verkabelung darauf, dass die Verkabelung mit der richtigen Polarität vorgenommen wird.
- Achten Sie bei der DC-Verkabelung darauf, dass der Netzschalter der PV-Anlage ausgeschaltet ist.

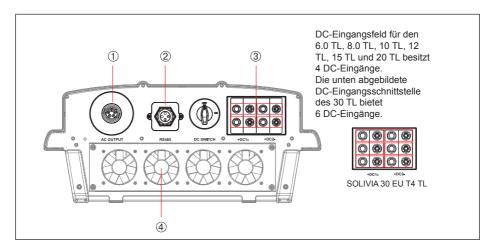


Abb. 6.8.: Eingangs-/Ausgangsschnittstelle

Nr.	Bezeichnung	6.0 TL 8.0 TL	10 TL	12 TL	15 TL	20 TL	30 TL
1	AC-Anschluss	400 V _{AC}					500 V _{AC}
2	Kommunikation	2 × RS485, 1 ×	EPO, 2 ×	Relaisste	uerung		
3	DC-Anschlüsse	4					6
4	Lüfter	1			4		

HINWEIS

Die Lüfter sind zu Abbildungszwecken ohne die Schutzabdeckungen dargestellt.

ACHTUNG

Es können Schäden an Maschinen und Geräten auftreten.

- ▶ Die Anzahl der Anschlüsse der PV-ANLAGE, die Leerlaufspannung und die Leistung von Strang_1 und Strang_2 müssen aufeinander abgestimmt sein.
- ▶ Die Anzahl der Anschlüsse der PV-ANLAGE, die Leerlaufspannung und die Leistung von Strang_3 und Strang_4 müssen aufeinander abgestimmt sein.
- ▶ Die maximale Leerlaufspannung der PV-Anlage darf 1000 V nicht übersteigen.
- ▶ Der V_{mpp}-Bereich von Eingang DC1 und Eingang DC2 muss 350~800 V_{pc} betragen.
- Das zwischen PV-Anlage und Wechselrichter installierte Gerät muss eine Nennspannung von <1000 VDC und < Kurzschlussstrom aufweisen.
- Die am Wechselrichter angeschlossene Eingangsleistung darf den in der unten stehenden Tabelle angegebene maximale Gesamteingangsleistung nicht überschreiten.

Eingangs-Höchstnennleistung:

Art der Begrenzung	6.0 TL	8.0 TL	10 TL	12 TL	15 TL	20 TL	30 TL
Gesamteingangsleistung	6,6 kW	8,7 kW	11 kW	13 kW	16.5 kW	22 kW	30 kW
Pro MPP-Tracker*	4,4 kW	5,6 kW	7,3 kW	8,7 kW	11 kW	14,7 kW	20,1 kW

^{*}mit asymmetrischer Eingangsleistung

Kabelquerschnitt:

Nennstrom	Kabelquerschnitt		
DC 34 A	5–6 mm ² /10 AWG		

Die DC-Kabelpolarität ist in positiv und negativ getrennt, wie in Abbildung 6-9 dargestellt. Die Verbindung muss mit der auf dem Wechselrichter angegebenen Polarität übereinstimmen.

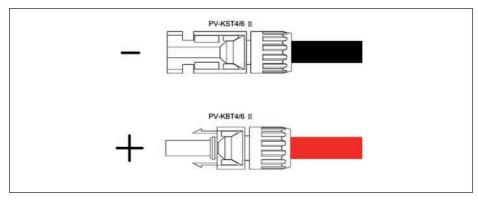
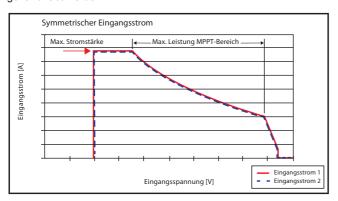



Abb. 6.9.: DC-Verkabelung

6.3.1 Asymmetrische Lasten

In Betrieb nutzen die Wechselrichter zwei separate MPP-Tracker, die zwecks optimalem Ausgleich sowohl symmetrische wie auch asymmetrische Lasten handhaben können. Somit können die Anforderungen für komplex ausgelegte PV-Anlagen erfüllt werden. Beispiel: ein nach Osten/ Westen ausgerichtetes Dach (symmetrische Last) oder ein nach Süden ausgerichtetes Gaubendach (asymmetrische Last).

Die folgenden Abbildungen veranschaulichen, wie symmetrische und asymmetrische Lasten gehandhabt werden:

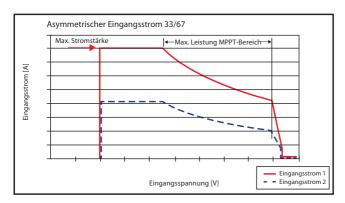


Abb. 6.10.: Vergleichsdiagramm für symmetrische und asymmetrische Eingangsleistung

Verkabelung des Wechselrichters

Eingangs-Höchstnennstrom:

Modell	Max. Eingangs- strom	Max. Leistung MPPT- Bereich, symmetrische Belastung (50/50)	Max. Leistung MPPT- Bereich, asymmetrische Belastung (33/67)
SOLIVIA 6.0 TL	10 A x 2	315 850 V _{DC}	250 850 V _{DC} (33/67%) 420 850 V _{DC} (67/33%)
SOLIVIA 8.0 TL	17 A x 2	280 850 V _{DC}	280 850 V _{DC} (33/67%) 330 850 V _{DC} (67/33%)
SOLIVIA 10 TL	20 A x 2	350 850 V _{DC}	350 850 V _{DC}
SOLIVIA 12 TL	20 A x 2	420 850 V _{DC}	420 850 V _{DC}
SOLIVIA 15 TL	24 A x 2	350 800 V _{DC}	470 800 V _{DC}
SOLIVIA 20 TL	30 A x 2	350 800 V _{DC}	480 800 V _{DC}
SOLIVIA 30 TL	34 A x 2	480 800 V _{DC}	620 800 V _{DC}

Für SOLIVIA 15 TL und 20 TL ist ein Kit zur Einhaltung der Anforderungen nach UTE 15712-1 erhältlich, das bei Delta unter der in der nachfolgenden Tabelle genannten Teilenummer bestellt werden kann.

6.4 Wirkungsgrad

Der beste Wirkungsgrad des Solar-Wechselrichters wird bei einer Eingangsspannung von 640 V erreicht.

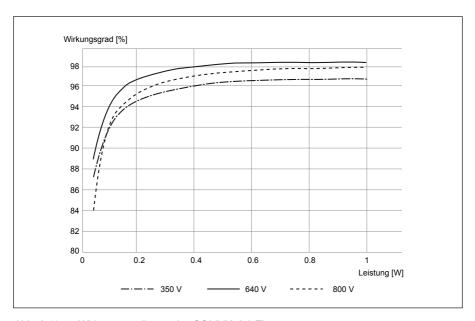


Abb. 6.11.: Wirkungsgradkurve des SOLIVIA 6.0 TL

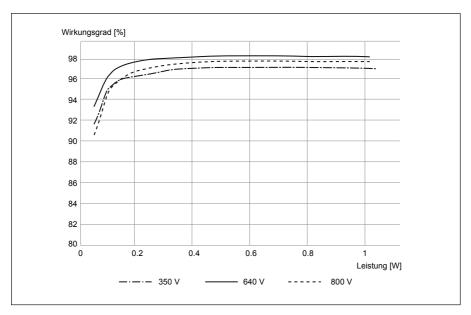


Abb. 6.12.: Wirkungsgradkurve des SOLIVIA 8.0 TL

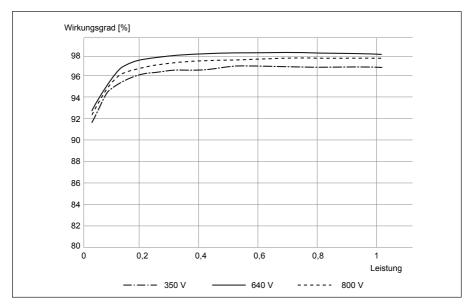


Abb. 6.13.: Wirkungsgradkurve des SOLIVIA 10 TL

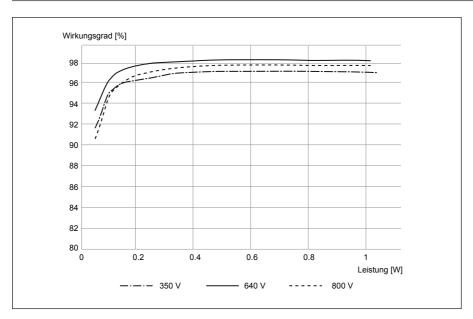


Abb. 6.14.: Wirkungsgradkurve des SOLIVIA 12 TL

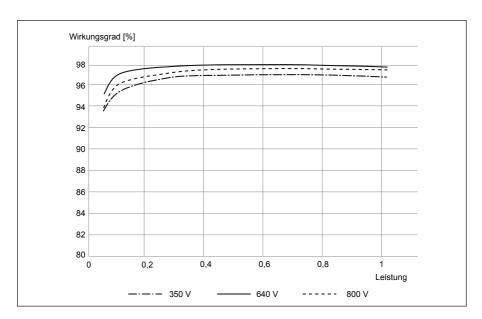


Abb. 6.15.: Wirkungsgradkurve des SOLIVIA 15 TL

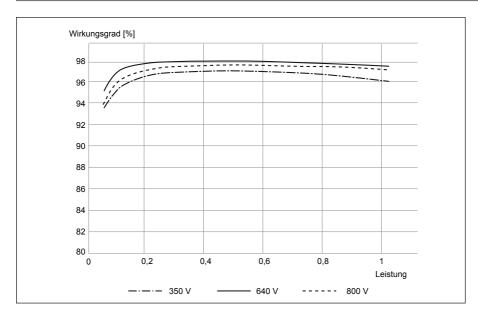


Abb. 6.16.: Wirkungsgradkurve des SOLIVIA 20 TL

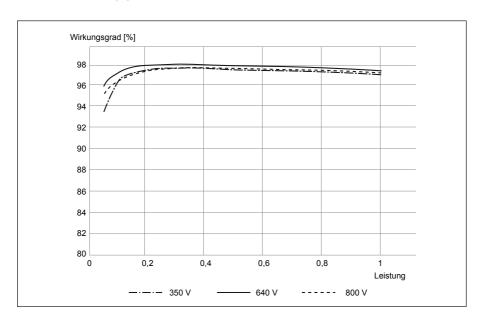


Abb. 6.17.: Wirkungsgradkurve des SOLIVIA 30 TL

6.5 Anschlüsse des Kommunikationsmoduls

Das Kommunikationsmodul unterstützt die Kommunikationsfunktionen mit einem Computer und bietet zudem 1 Notausschaltung (EPO, Emergency Power Off) und 2 Sätze Relaissteuerungen. Die Bestandteile des Kommunikationsmoduls sind in Abbildung 6.18 dargestellt. Die Funktionen der einzelnen Teile sind in den Abschnitten 6.5.1 bis 6.5.3 beschrieben.

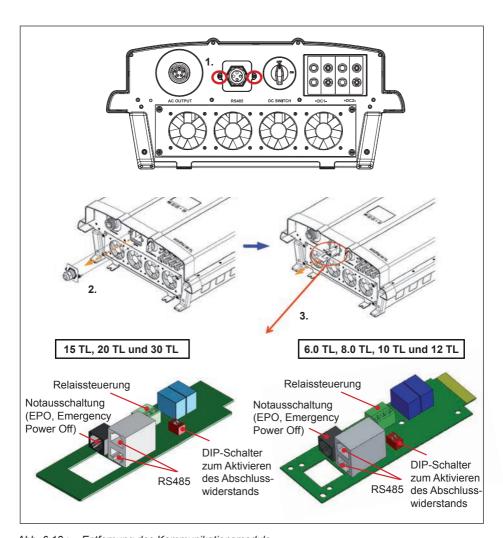


Abb. 6.18.: Entfernung des Kommunikationsmoduls

Verkabelung des Wechselrichters

Führen Sie zum Entfernen des Kommunikationsmoduls die folgenden Anweisungen aus:

- 1. Lösen und entfernen Sie die beiden in Abbildung 6.15 markierten Kreuzschlitzschrauben.
- 2. Entfernen Sie die Vorderplatte wie dargestellt.
- Ziehen Sie das Kommunikationsmodul vorsichtig aus dem Wechselrichter. Entfernen Sie ggf. Einfassungen und Stecker.

6.5.1 RS485-Verbindung

Die Polbelegung des RS485 ist in Tabelle 6.3 angegeben. Die Verkabelung von Anschlüssen mehrerer Wechselrichter ist in Abbildung 6.16 angegeben.

POL	FUNKTION	
4	GND	
7	DATA+	
8	DATA-	

Tabelle 6.3.: Belegung der RS485-Pole

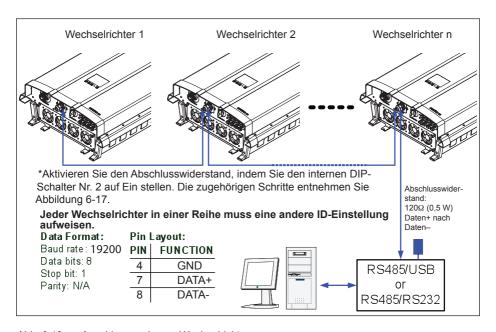


Abb. 6.19.: Anschluss mehrerer Wechselrichter

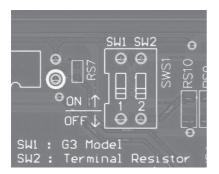


Abb. 6.20.: Abschlusswiderstand-Schalter bei Anschluss mehrerer Wechselrichter

Stellen Sie zum Aktivieren des internen Abschlusswiderstands den Schalter Nummer 2 am Kommunikationsmodul auf Ein. Weitere Informationen entnehmen Sie Abbildung 6.17.

Baudrate	Programmierbar, 2400/4800/9600/19200/38400, Standard = 19200
Data Bit	8
Stop Bit	1
Parity	k. A.

Tabelle 6.4.: RS485-Datenformat

6.5.2 Anschlüsse der Notausschaltung (EPO, Emergency Power Off)

SOLIVIA 10 TL, 15 TL, 20 TL und 30 TL bieten zwei Notausschaltungs-Funktionssätze. Bei einem Kurzschluss des äußeren externen Schalters wird der Wechselrichter sofort abgeschaltet. Die Polbelegung finden Sie in Tabelle 6.5.

POL	Begriffsbestimmung
1	EPO1
2	EPO1
3	k. A.
4	EPO2
2 3 4 5	EPO2
6	k. A.
7	k. A.
8	k. A.

Tabelle 6.5.: Polanordnung der Notausschaltung (EPO, Emergency Power Off)

HINWEIS

Schließen Sie zum Abschalten des Wechselrichters entweder die Pole 1 und 2 oder die Pole 4 und 5 kurz.

6.5.3 Relaissteuerungs-Anschluss

Bietet 2 Sätze Relaissteuerungen – NO1 und NO2. Den Schaltplan finden Sie in Abbildung 6.16. Unten finden Sie weitere Details.

NO1: Bei einem erkannten Fehler werden COM und NO1 kurzgeschlossen.

NO2: Wenn der Wechselrichter an das Netz angeschlossen ist, werden COM und NO2 kurzgeschlossen.

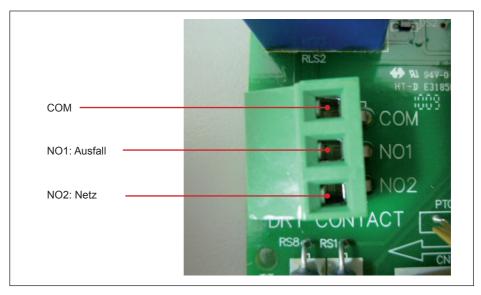


Abb. 6.21.: Anschluss der Relaissteuerung

7. Bedienung des PV-Wechselrichters

WARNUNG

Brandgefahr!

Die Gehäusetemperatur kann während des Betriebs 70 °C überschreiten. Aufgrund der heißen Oberfläche können Verletzungen auftreten.

Nicht berühren!

Stellen Sie nach der Installation sicher, dass die AC-, DC- und Kommunikationsverbindungen korrekt angeschlossen sind. Führen Sie zum Starten des Wechseltrichters folgende Schritte aus:

- Überprüfen Sie die DC-Spannung der PV-Anlage:
 - Nehmen Sie die Abdeckungen der PV-Anlage ab, sodass sich diese im vollen Sonnenlicht befinden.
 - Messen Sie die DC-Leerlaufspannung der PV-Anlage am positiven (+) und am negativen (–) DC-Anschluss des DC-Verteilerkastens. Diese Spannung muss höher als 250 V_{DC} und niedriger als 1000 V_{DC} sein.
- 2. Überprüfen Sie die AC-Netzspannung:
 - Messen Sie mit einem AC-Spannungsmesser die AC-Netzspannung und stellen Sie sicher, dass die Spannung in etwa dem Nennwert entspricht (Nennwert = 230 VAC Line-N).
- 3. Nehmen Sie alle erforderlichen Einstellungen vor:
 - Schalten Sie den AC-Unterbrecher ein, um den Wechselrichter mit Strom zu versorgen (40 Sekunden).
 - Überprüfen Sie das Display des Wechselrichters.
 - Beim ersten Start werden auf dem Display Länder- und Spracheinstellungen angezeigt.

HINWEIS

Die Länderliste kann sich aufgrund laufender Zertifizierungsverfahren ändern. Etwaige Fragen beantwortet Ihr Delta Support Team.

Unterstützte Länder: Belgien, Frankreich, Italien, Niederlande, Spanien, Griechenland, Deutschland, Tschechische Republik, Slowakei, Slowenien, Portugal, Bulgarien, Rumänien, Großbritannien (240 V), Australien, französische Inseln, Dänemark

Unterstützte Sprachen: Englisch, Italienisch, Französisch, Deutsch, Niederländisch und Spanisch

Der nächste Schritt besteht in der Einstellung des Wechselrichters für das passende Netz. Die Netzauswahl für jedes Wechselrichtermodell finden Sie in der folgenden Liste:

Bedienung des PV-Wechselrichters

Netz (wie im Dis- play angezeigt)	Beschreibung	6.0 TL	8.0 TL	10 TL	12 TL	15 TL	20 TL	30 TL
Australia	Australien AS 4777			- '-		×	×	
Belgium	Belgien nach C10/11, Juni 2012			X		X	X	X
Bulgaria	Bulgarien nach VDE 0126					X	X	
Czech	Tschechische Republik nach VDE 0126			Х		X	X	Х
Denmark	Dänemark nach VDE AR N 4105	×		X		X	X	X
France	Frankreich nach UTE 15 712-1			X		X	X	X
France (60Hz)	Französische Inseln 60 Hz					×	×	
France VFR 2013	Frankreich nach VDE 0126-1-1 / A1 - mit 50,4 Hz.	х		х		х	x	х
France VFR 2014	Frankreich nach VDE 0126-1-1 / A1 - mit 50,6 Hz.	Х		х		х	х	х
Germany (VDE0126)	Deutschland nach VDE 0126			х		Х	Х	х
Germany (LVD)	Deutschland nach VDE AR N 4105	х	Х	х	х	Х	Х	х
Germany (MVD)	Deutschland nach BDEW					х	х	Х
Greece	Griechenland nach VDE 0126			х		х	х	
Italy BT CEI 0-21	Italien nach CEI 0-21:2012-06			х		х	х	х
Netherlands	Niederlande gemäß VDE 0126 + EN 50438			х		х	Х	х
Poland	Polen nach EN 50438			х				х
Portugal	Portugal nach EN 50438					Х	Х	х
Romania	Rumänien nach VDE 0126			х		Х	Х	х
Slovakia	Slowakei nach VDE 0126			х		Х	Х	х
Slovenia	Slowenien nach SONDO Klasse C					Х	Х	х
Spain (RD661)	Spanien nach RD 661					Х	Х	
Spain (RD1663)	Spanien nach RD 1663					Х	Х	
Spain (RD1699)	Spanien nach RD 1699					Х	Х	
UK	Großbritannien G59-2 230 V					Х	Х	Х
UK (240)	Großbritannien G59-2 240 V					х	х	х

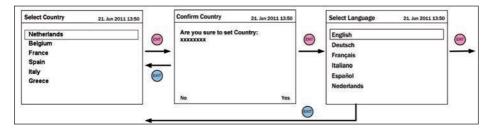


Abb. 7.1.: Ländereinstellungen beim Erststart

Nehmen Sie alle Einstellungen für Datum, Uhrzeit, Wechselrichter-ID, Isolierung usw. vor.

HINWEIS

- Bei Länderauswahl Deutschland oder Italien müssen eventuell die Einstellungen für Wirk- und Blindleistung angepasst werden (genaue Informationen zu den Einstellungen erhalten Sie vom örtlichen Netzbetreiber).
- ▶ Bei Bedarf erhalten Sie von der lokalen Support-Hotline Unterstützung bei der Einrichtung der MVD/LVD-Netzeinstellungen für Deutschland bzw. CEI-0-21/A70-Netzeinstellungen für Italien.

4. Starten Sie den Wechselrichter:

- Wenn Sie die Grundeinstellungen vorgenommen haben, schalten Sie die DC-Schalter ein (auch den DC-Schalter im Wechselrichter). Der Wechselrichter führt einige Selbsttests durch und startet, sofern kein Problem vorliegt, einen Countdown.
- Wenn der Betrieb aufgenommen wurde, überprüfen Sie die Richtigkeit sämtlicher Informationen auf dem Display (beispielsweise Eingangsspannung, -stromstärke und -leistung sowie Ausgangsspannung, -stromstärke, -leistung und -frequenz)

Bei ausreichender Sonneneinstrahlung nimmt das Gerät nach einem erfolgreich durchgeführten Selbsttest automatisch den Betrieb auf (etwa 2 Minuten nach dem ersten Start an einem Tag). In Abb. 7.2 sind die einzelnen Elemente vom LCD-Display und vom Steuerfeld dargestellt. Das Display besteht aus einem grafischen 5-Zoll-LCD mit einer Auflösung von 320 x 240 Punkten sowie einer LED-Anzeige für den Wechselrichterstatus. Grüne und rote LED-Leuchten stellen die verschiedenen Betriebszustände des Wechselrichters dar. Die Details zu den LED-Leuchten finden Sie in Tabelle 7-1 erklärt.

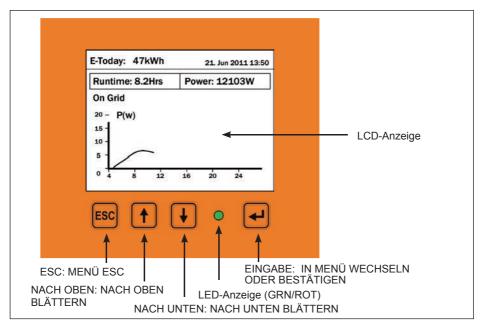


Abb. 7.2.: LCD-Anzeige- und Steuerfeld

Wechselrichterstatus	Grüne LED	Rote LED
Standby oder Countdown	BLINKEN - Ein 1 Sek., Aus	AUS
	1 Sek.	
Strom EIN	EIN	AUS
Fehler oder Ausfall	AUS	EIN
Nacht (kein DC)	AUS	AUS
Bootloader-Modus	BLINKEN - Ein 1 Sek., Aus 1	Sek., abwechselnd erst grüne
	LED, dann rote LED	_

Tabelle 7.1.: LED-Anzeige

7.1 Einstellung der Stromabschaltungsparameter

7.1.1 Einstellungen der Stromabschaltungsvorrichtung(PDD, Power Disconnection Device)

Dies gilt für LVD- und MVD-Einstellungen bei der Auswahl des Netzes als DE LVD oder DE MVD.

HINWEIS

DE LVD steht für die deutsche Niederspannungsrichtlinie, DE MVD für die deutsche Mittelspannungsrichtlinie.

Die Netzeinstellungen für LVD und MVD (Deutschland) können den Anforderungen des lokalen Versorgungsunternehmens entsprechend vorgenommen werden. Die integrierte Stromabschaltungsvorrichtung kann auf drei Modi gestellt werden: 1) Einstellung auf die in LVD/MVD-Vorschriften empfohlenen Standardwerte, 2) manuelle Anpassungen innerhalb der zulässigen Parameterbereiche entsprechend den LVD/MVD-Vorschriften für den jeweils gewählten Modus oder 3) Abschalten des Geräts.

Während der Anzeige eines der 4 Netzeinstellungsfenster können Sie die Stromabschaltungsvorrichtung jederzeit abschalten, indem Sie die Nach-oben- und die Nach-unten-Taste gleichzeitig länger als 5 Sekunden gedrückt halten.

Den unten stehenden Tabellen können Sie die zulässigen LVD/MVD-Parameterbereiche für die einzelnen Vorschriften entnehmen:

Wenn als Netz LVD gewählt wurde, sind die folgenden einstellbaren Werte zulässig:

Parameter	Name auf Display	Einstellbare Werte
Spannungssteigerungsschutz U>	Umax	110 115 %

Wie in VDE AR N 4105 definiert, wird nur der Spannungssteigerungsschutz Umax als 10-Minuten-Mittelwertschutz konzipiert, um das Überschreiten des in DIN EN 50160 festgelegten Grenzwerts zu verhindern (Überwachung der Leistung).

Wenn als Netz MVD gewählt wurde, sind die folgenden einstellbaren Werte zulässig:

Bedienung des PV-Wechselrichters

Parameter	Name auf Display	Einstellbare Werte	Empfohlen von MVD
Spannungssteigerungsschutz U>>	Crit. Umax	1,00 1,30 U _n	1,20 U _{ns}
Unterspannungsschutz U<	Umin	0,10 1,00 U _n	0,80 U _{ns}
Unterspannungsschutz U<<	Crit. Umin	0,10 1,00 U _n	0,45 U _{ns}
Frequenzsteigerungsschutz f>	Fmax	50,0 52,0 Hz	51,5 Hz
Unterfrequenzschutz f>	Fmin	47,5 50 Hz	47,5
Verzögerung für U<	tUmin	1,5 2,4 s	1,5 2,4 s

7.1.2 Netz- und Anlagenschutz

Der Netz- und Anlagenschutz (ENS) ist ein Schnittstellenschutz zum Einsatz in Italien. Obwohl für diese Wechselrichtermodelle kein integrierter Schnittstellenschutz benötigt wird, kann ein externes Schutzsystem vorgeschrieben sein. Achten Sie bei der Einstellung der Stromabschaltungsparameter am Wechselrichter darauf, dass diese die Stromabschaltungseinstellungen des externen Schnittstellenschutzes nicht überlagern. Bei Länderauswahl Italien wird durch Eingabe des Passwortes "5555" auf der Seite Installationseinstellungen die Anpassung der Stromabschaltungsparameter aktiviert, so dass diese direkt im Menü Netzeinstellungen definiert werden können.

7.2 Startseite

Im normalen Betrieb des Wechselrichters zeigt das LCD die Startseite an, wie in Abb. 7.4 dargestellt. Auf der Startseite sind die Ausgangsleistung, der Wechselrichterstatus, E-Today, Datum und Uhrzeit angegeben.

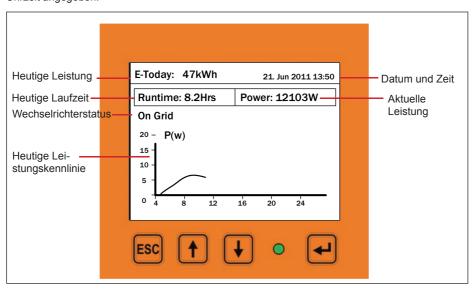


Abb. 7.4.: Startseite

7.3 LCD-Fließdiagramm

Drücken Sie eine beliebige Taste, um die Menüseite aufzurufen, die Optionen sind in Abb. 7.5 angegeben. E-Today finden Sie auf der Startseite. Der Inhalt der weiteren Seiten wird detailliert in den Abschnitten 7.3.1 erläutert. 7.3.6.

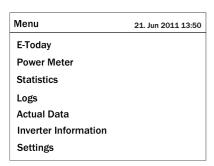


Abb. 7.5.: Seite Hauptmenü

Bedienung des PV-Wechselrichters

- ",7.3.1 Leistungsmessung" on page 60
- ",7.3.2 Statistiken" on page 60
- ",7.3.3 Protokolle" on page 61
- ",7.3.4 Aktuelle Daten" on page 61
- ",7.3.5 Wechselrichterinformationen" on page 62
- ",7.3.6 Einstellungen" on page 63

7.3.1 Leistungsmessung

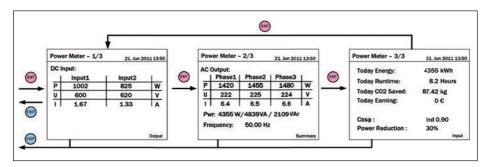


Abb. 7.6.: Seiten für Leistungsmessung

7.3.2 Statistiken

Wenn auf dieser Seite **ENT** gedrückt wurde, kann der Benutzer die Verlaufsdaten zur Stromerzeugung auf Jahres-, Monats- und Tagesbasis anzeigen.

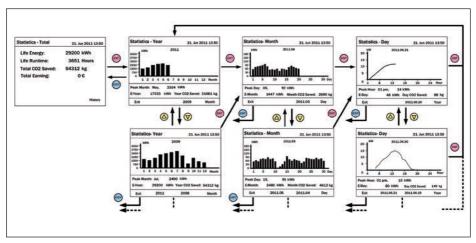


Abb. 7.7.: Seiten für Statistiken

7.3.3 Protokolle

Wenn auf dieser Seite **ENT** gedrückt wurde, kann der Benutzer das interne Protokoll und den Datenspeicher/das Ereignisprotokoll anzeigen.

7.3.3.1 Interne Daten

Hier werden alle Meldungen des Wechselrichters angezeigt. Diese Meldungen geben den Status interner Prozesse sowie Veränderungen an den AC- und DC-Anschlüssen an, zum Beispiel: Frequenz, Spannung usw.

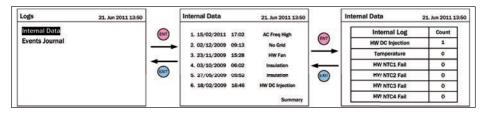


Abb. 7.8.: Fließdiagramm zu internen Daten

7.3.3.2 Ereignisprotokoll (nur deutsche LVD- oder MVD-Netze)

Hier werden alle Ereignisse aufgezeichnet, die über die RS485-Verbindung übermittelt werden oder vom Benutzer am Display vorgenommen wurden. In diesem Protokoll werden nur Ereignisse angezeigt, die sich auf die globale Produktion auswirken können.

Abb. 7.9.: Fließdiagramm zum Ereignisprotokoll

7.3.4 Aktuelle Daten

Die aktuellen Daten umfassen 4 Seiten, auf denen die maximalen und/oder minimalen Verlaufswerte verzeichnet sind, darunter Spannung, Stromstärke, Leistung und Temperatur.

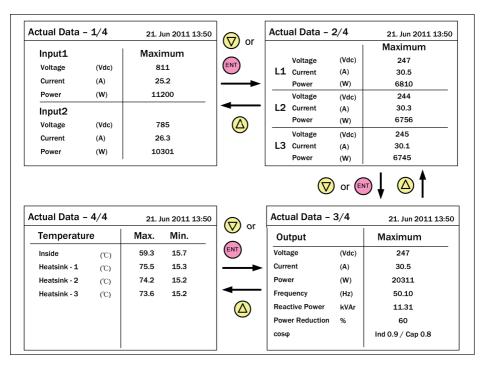


Abb. 7.10.: Fließdiagramm zu aktuellen Daten

7.3.5 Wechselrichterinformationen

Auf dieser Seite werden die folgenden Informationen angezeigt: Seriennummer, Firmware-Version. Installationsdatum und Wechselrichter-ID. Informationen zum Ändern der Wechselrichter-ID finden Sie im Abschnitt "7.3.6.2 Installationseinstellungen" on page 64.

Inverter Information	21. Jun 2011 13:50
Serial Number	0946000006
DSP-Version	1.80
RedVersion	1.17
CommVersion	1.16
Installation Date	05.Jan.2009
Inverter ID	001
Baudrate	19200
Country*	Italy CEI 0-21

IT-Grid Version TN 0.10

Abb. 7.11 .: Seite für Wechselrichterinformationen

HINWEIS

Die in Abb. 7.11 dargestellten Informationen dienen lediglich der Veranschaulichung und stimmen möglicherweise nicht mit den tatsächlich auf Ihrem Wechselrichter angezeigten Informationen überein.

Das letzte Menüelement entstammt der italienischen Software-Version und gilt nur für Anlagen in Italien.

7.3.6 Einstellungen

Die Einstellungen umfassen allgemeine Einstellungen, Install.einstll. und Wirk-/Blindleistungsregelung.

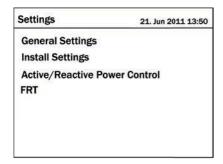


Abb. 7.12.: Einstellungsseite

HINWEIS

Auf FRT können Sie nur zugreifen, wenn Sie Deutschland/MVD oder Italien/CEI 0-21 bzw. Italien/A70 als Netz ausgewählt haben.

7.3.6.1 Allgemeine Einstellungen

Zu den allgemeinen Einstellungen zählen Sprache, Datum, Zeit, Bildschirmschoner, Helligkeit, Kontrast, Baudrate, CO2-Einsparung, Ertragswert und Währung.

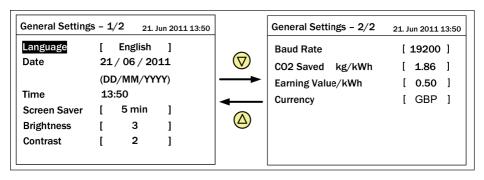


Abb. 7.13.: Seite für allgemeine Einstellungen

Benutzer können Sprache, Datum, Zeit, Bildschirmschoner, LCD-Helligkeit und Kontrast auf der Seite 1 der allgemeinen Einstellungen festlegen. Der Bildschirmschoner kann von 5 bis 60 Minuten eingestellt werden. Wenn länger als in der Zeitbegrenzung angegeben keine Taste gedrückt wurde, schaltet sich die LCD-Hintergrundbeleuchtung automatisch ab. Helligkeit und Kontrast können in den Stufen von 1 bis 5 (niedrig nach hoch) eingestellt werden. Auf der Seite 2 der allgemeinen Einstellungen können Baudrate, CO2-Ersparnis, Ertragswert und Währung eingestellt werden. Als Währung können Australischer Dollar (AUD), Euro (EUR) und Britisches Pfund (GBP) ausgewählt werden.

7.3.6.2 Installationseinstellungen

Für die Eingabe der Installationseinstellungen sind die richtigen Passwörter erforderlich. Die Installationseinstellungen für Benutzer und Installationstechniker unterscheiden sich voneinander. Das Passwort kann nicht geändert werden. Nach der Bestätigung des Installateur-Passworts (5555), kann der Benutzer die Wechselrichter-ID und die Isolierungseinstellungen festlegen. Das Land kann angezeigt, jedoch nicht geändert werden.

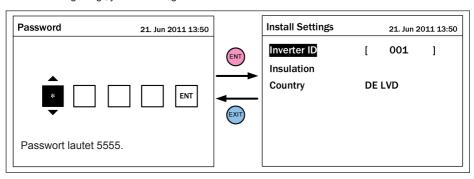


Abb. 7.14.: Seite für Installationseinstellungen – Installateurmodus

Inverter ID: Diese Einstellung wird verwendet, um bei Anlagen mit mehr als einem Wechselrichter eindeutige IDs festzulegen. In Anlagen mit mehreren Wechselrichtern, bei denen diese

- in einem Netzwerk geschaltet sind, muss jeder Wechselrichter eine eindeutige ID besitzen.
- Insulation: ON bedeutet die aktivierte Messung der Impedanz zwischen Anlage und Erdung, bei einem Fehler wird keine Verbindung mit dem Netz hergestellt. Je nach DC-Verkabelungsbedingungen kann der Benutzer 6 verschiedene Isolierungserkennungsmethoden festlegen: ON, Positive Ground, Negative Ground, DC1 Only, DC2 Only und Disable. Der Installateur kann je nach aktuellen Bedingungen unterschiedliche Widerstandskriterien auswählen.
- Country: Dies ist das Land, das beim Start ausgewählt wurde (nicht einstellbar).

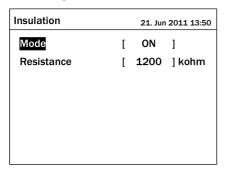


Abb. 7.15.: Isolierungseinstellungen – Installateurmodus

7.3.6.3 Regelung der Wirk-/Blindleistung für DE LVD und DE MVD

Im Folgenden finden Sie eine Übersicht über die Funktionen, die zur Regelung der Wirk- und Blindleistungserzeugung für deutsche LVD und MVD angepasst werden können.

Funktion	Verfügbarkeit		Beschreibung
	LVD	MVD	
Wirkleistungsregelung			
Power limit	х	Х	Zur Senkung der maximalen Leistungserzeugung
Power vs. frequency	Х	х	Zum Einstellen des Leistungs- gradienten in Abhängigkeit von der Frequenz
Blindleistungsregelung			
Constant cos φ	Х	х	Zum Einstellen eines Festwerts für cos φ (induktiv oder kapa- zitiv)
cos φ (p)	х	х	Zum Einstellen eines Werts für cos φ (induktiv oder kapazitiv) in Abhängigkeit vom Wirkleistungsverhältnis P/P _n
Constant reactive power		Х	Zum Einstellen des Blindleistungsverhältnisses Q/S _n . Nur für MVD-Netze.

Bedienung des PV-Wechselrichters

Funktion	Verfügb	arkeit	Beschreibung
	LVD	MVD	
Q (V)		х	Zum Einstellen des Blindlei- stungsverhältnisses Q/S _n in Abhängigkeit von der Span- nung V. Nur für MVD-Netze.

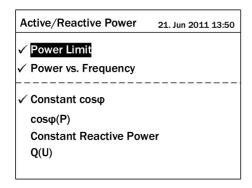
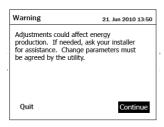



Abb. 7.16.: Einstellungsseite für Wirk-/Blindleistung

Hinweis: Vor der Einstellung der Wirk-/Blindleistung wird ein Warnfenster mit der Aufforderung geöffnet, die Hinweise genau zu lesen und zu wählen, ob die Eingabe fortgesetzt oder abgebrochen werden soll. Vgl. nachstehende Warnmeldungen im Zusammenhang mit den Einstellungen.

ACHTUNG

Schäden an Maschinen und Geräten können auftreten.

- Lassen Sie Einstellungen an der Wirk- und Blindleistung nur von ausgebildeten Elektrotechnikern mit entsprechender fachlicher Qualifikation vornehmen.
- ▶ Die Einstellungen können die Energieerzeugung beeinflussen.
- Einige der im Einstellungsmenü für die Wirk-/Blindleistung zu hinterlegenden Werte müssen vom örtlichen Netzbetreiber zur Verfügung gestellt werden. Halten Sie mit ihm Rücksprache, bevor Sie Einstellungen vornehmen.

7.3.6.3.1 Leistungsbegrenzung

Benutzer können den Prozentsatz der aktuellen oder Nennleistung festlegen, um die Ausgangsleistung des Wechselrichters zu begrenzen. Der Wechselrichter startet die Aktion, sobald der Modus vom Benutzer auf "ON" gestellt wurde. Diese Funktion ist für LVD- und für MVD-Netze verfügbar.

Active Power Control	21. Jun 2011 13:50
Set Point Actual/Rated Power Mode	[60] % [Rated] [ON]

Abb. 7.17.: Einstellungsseite für die Leistungsbegrenzung

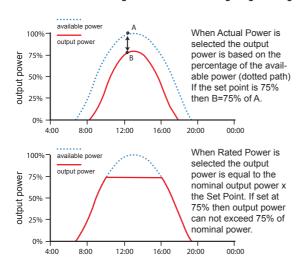


Abb. 7.18.: Istleistung/Nennleistung

Bedienung des PV-Wechselrichters

Parameter	Einstellbare Werte	Beschreibung
Set point	0 100 %	Legt die Leistungsreduzierung auf den eingestell- ten Wert fest. Der Wert wird mit dem Wert Gesp. Leist.begr. multipliziert.
Actual/Rated	Actual Rated	Wählt aktuelle oder Nennleistung
Mode	ON OFF	Schaltet die Funktion ein und aus.

7.3.6.3.2 Leistung/Frequenz

Die Benutzer können zwischen zwei Modi wählen: LVD und MVD. Die Abbildungen unten erläutern unterschiedliches Verhalten in diesen Modi. Der Wechselrichter aktiviert diese Modi je nach ausgewähltem Land und den für dieses Land geltenden Anforderungen.

Diese Funktion ist für LVD- und für MVD-Netze verfügbar. Mit dieser Funktion können Benutzer eine Leistungsreduzierung als Prozentsatz der maximalen Leistung einstellen.

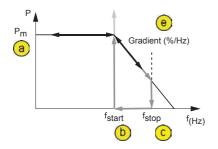


Abb. 7.19.: LVD-Kurve für Leistung / Frequenz

Active Power Control	2	1. Jun 20:	LO 13:50)
Δctual/Rated Power	г	Δctual	1	
Actual/ Nated 1 ower	•		•	
Start Frequency	L	50.20] HZ	
Stop Frequency	[] Hz	
Recovery Frequency	[50.05] Hz	
Gradient	[40] %	
Recovery Time	[] s	
Mode	[ON]	
	Actual/Rated Power Start Frequency Stop Frequency Recovery Frequency Gradient Recovery Time	Actual/Rated Power [Start Frequency [Stop Frequency [Recovery Frequency [Gradient [Recovery Time [Actual/Rated Power [Actual Start Frequency [50.20 Stop Frequency [50.05 Gradient [40 Recovery Time]	Actual/Rated Power

Abb. 7.21.: Leistung/Frequenz



Abb. 7.20.: MVD-Kurve für Leistung Frequenz

Pie Funktion Leistung/ Frequenz wird für LVD- und MVD-Netze benötigt. Stellen Sie sicher, dass der Modus auf ON steht und deaktivieren Sie

ihn nicht

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Actual / Rated Power		Actual oder Rated kann gewählt werden
Start frequency	50,00 55,00	Frequenz, bei der die Leistungsreduzierung gestartet wird
Stop frequency		Frequenz, bei der die Leistung = 0 ist. Dieser Wert errechnet sich aus dem Gradienten und der Startfrequenz.
Recovery frequency	50,00 55,00	Diese Funktion ist nur für MVD verfügbar. Dieser Wert entspricht der Netzanschlussfrequenz.
Gradient	0 100 %	Mit dieser Funktion wird der Gradient eingestellt. Einheiten: % / Hz.
Recovery Time		Entfällt für LVD oder MVD
Mode	ON OFF	Schaltet die Funktion ein und aus

7.3.6.3.3 Konstante $\cos \phi$

Diese Funktion ist für LVD- und für MVD-Netze verfügbar und ermöglicht die Einrichtung der Konstanten $\cos \phi$.

21. Jun 2011 13:50
[Ind 0.90]
[ON]

Abb. 7.22.: Einstellungsseite für die Konstante $\cos \varphi$

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
cos φ	inductive capacitive	Legt cos φ auf den eingestellten Wert fest.
	Ind 0,8 Ind 0,99, 1,	_
	Kap 0,8 Kap. 0,99	
Mode	ON OFF	Schaltet die Funktion ein und aus

$7.3.6.3.4 \cos \varphi(P)$

Diese Funktion ist für LVD- und für MVD-Netze verfügbar.

In dieser Funktion kann einem Leistungsverhältnis P/Pn der Wert cos φ zugewiesen werden.

Die folgende Kurve ist ein Einstellungsbeispiel für die Werte:

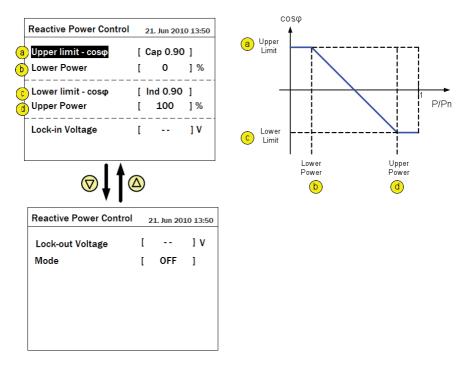


Abb. 7.23.: Einstellungsseite für cos $\varphi(P)$

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Upper limit - cos φ	Ind 0,80 Kap 0,80	Die Obergrenze für cos ϕ muss über der Untergrenze für cos ϕ liegen
Lower Power	0 100 %	
Lower limit - cos φ	Ind 0,80 Kap 0,80	
Upper Power	0 100 %	Die Obergrenze der Leistung muss über der Untergrenze der Leistung liegen
Lock-in Voltage		Keine Verwendung bei DE LVD/MVD
Lock-out Voltage		Keine Verwendung bei DE LVD/MVD

Parameter	Einstellbare Werte	Beschreibung
Mode	ONIOFF	Schaltet die Funktion ein und aus

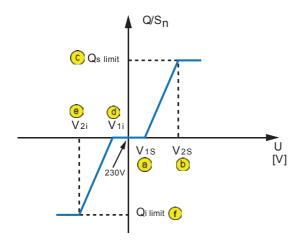
7.3.6.3.5 Konstante Blindleistung

Diese Funktion ist nur für MVD-Netze verfügbar.

Mit dieser Funktion kann eine Konstante cos Blindleistung festgelegt werden.

Reactive Power Control	21. Jun 2011 13:50
Reactive Power (Q/Sn) Mode	[Cap 30] % [OFF]

Abb. 7.24.: Einstellungsseite für Konstante Blindleistung


Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Reactive power Q/Sn	-60 +60 %	Blindleistungsverhältnis in Bezug auf Scheinlei-
	inductive capacitive	stung.
Mode	ONIOFF	Schaltet die Funktion ein und aus

7.3.6.3.6 Q(V)

Diese Funktion ist nur für MVD-Netze verfügbar.

Mit dieser Funktion kann das Blindleistungsverhältnis Q/Sn auf eine Spannung V eingestellt werden.

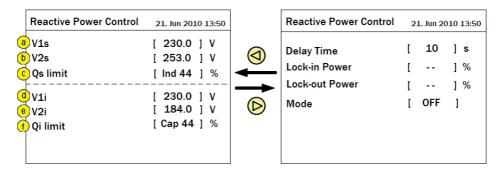
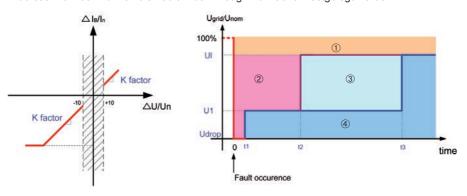


Abb. 7.25.: Einstellungsseite für Q(V)


Einstellbare Parameter

Parameter	Menüname	Einstellbare Werte	Beschreibung
Lower Q/Sn	Qi-Limit	0 60 %	Muss im Bereich von Ind. 60 %
		inductive capacitive	Kap 60% liegen
Upper Q/Sn	Qs-Limit	0 60 %	Muss im Bereich von Ind. 60 %
		inductive capacitive	Kap 60% liegen
Lower capaci-	V2i	184 264 V	
tive point			
Upper capaci-	V1i	184 264 V	Die Standardeinstellung für DE
tive point			MVD ist V1i = V1s = 230 V
Lower inductive	V1s	184 264 V	
point			
Upper inductive	V2s	184 264 V	
point			
Delay time		0 10 s	
Lock-in Power		entfällt	Keine Verwendung bei DE MVD
Lock-out Power		entfällt	Keine Verwendung bei DE MVD
Mode		ONIOFF	Schaltet die Funktion ein und aus

7.3.6.3.7 Fault Ride-Through (FRT)

Diese Funktion ist nur für MVD-Netze verfügbar.

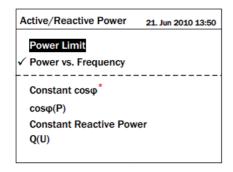
Mit dieser Funktion können die Fault-Ride-Through-Funktionen festgelegt werden.

- Keine Instabilität oder Trennung vom Netz
- Einspeisung von Blindstrom vom K-Faktor abhängig
- ③ Wie Bereich 2, Einspeisung von Blindstrom vom K-Faktor abhängig
- Trennung vom Netz

FRT - 1/2		21. Jun 20	011	13:50		FRT - 2/2		21. Jun 20	11	13:50
Dead band - Vh	[+10	1	%	_	t3	I	3.00	1	s
Dead band - VI	1	-10	1	%		Mode	1	ON	1	
K factor	[2.0	1		100					
Vdrop	[0	1	%	_					
t1	[200	1	ms						
U1	1	20	1	%						
t2	1	3.00	1	s						

Abb. 7.26.: Einstellungsseite für Fault Ride-Through

Einstellbare Parameter

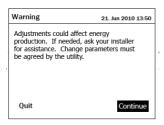

Parameter	Einstellbare Werte	Beschreibung
Dead band - Vhigh	+0 +20 %	
Dead band - Vlow	-20 0 %	
K factor	0 10	
Vdrop	0 90 %	
t1	0 500 ms	
U1	20 90 %	
t2	0,01 5 s	
t3	0,01 5 s	
Mode	ON OFF	Schaltet die Funktion ein und aus

7.3.6.4 Regelung der Wirk-/Blindleistung für Italien/CEI 0-21 und Italien/A70.

Im Folgenden finden Sie eine Übersicht über die Funktionen, die zur Regelung der Wirk- und Blindleistungserzeugung für italienische CEI 0-21- und A70- Netze angepasst werden können. Italien/CEI 0-21 bezieht sich auf Niederspannungsnetze, Italien/A70 auf Mittelspannungsnetze.

Funktion	Verfügba	rkeit	Beschreibung
	CEI 0-21	A70	
Wirkleistungsregelung			
Power limit	Х	Х	Zur Senkung der maximalen Leistungserzeugung
Power vs. frequency	Х	Х	Zum Einstellen des Leistungs- gradienten in Abhängigkeit von der Frequenz
Blindleistungsregelung			

Funktion	Verfügbar	rkeit	Beschreibung
	CEI 0-21	A70	
Constant cos φ	2.0		Diese Funktion ist für CEI 0-21 und A70 nicht verfügbar.
cos φ (p)	х	х	Zum Einstellen eines Werts für cos φ (induktiv oder kapazitiv) in Abhängigkeit vom Wirkleistungsverhältnis P/P _n
Constant reactive power	х	Х	Zum Einstellen des Blindleistungsverhältnisses Q/S _n .
Q (V)	х	х	Zum Einstellen des Blindlei- stungsverhältnisses Q/S _n in Abhängigkeit von der Span- nung V.


Hinweis: Leistungsbegrenzung und Leistung/Frequenz können vom Benutzer gleichzeitig aktiviert werden.

Für die Funktionen zur Regelung der Blindleistung: $cos\phi(P)$, konstante Blindleistung, und Q(V) nur eine dieser Optionen kann jeweils aktiviert werden.

✓ zeigt an, dass eine Funktion ausgeführt wird

* Diese Funktion ist für CEI 0-21 und A70 nicht aktiv, obwohl sie im Menü angezeigt wird.

Abb. 7.27.: Einstellungsseite für Wirk-/Blindleistung

Hinweis: Vor der Einstellung der Wirk-/Blindleistung wird ein Warnfenster mit der Aufforderung geöffnet, die Hinweise genau zu lesen und zu wählen, ob die Eingabe fortgesetzt oder abgebrochen werden soll. Vgl. Warnmeldungen im Zusammenhang mit den Einstellungen.

ACHTUNG

Schäden an Maschinen und Geräten können auftreten.

- Lassen Sie Einstellungen an der Wirk- und Blindleistung nur von ausgebildeten Elektrotechnikern mit entsprechender fachlicher Qualifikation vornehmen.
- ▶ Die Einstellungen können die Energieerzeugung beeinflussen.
- ▶ Einige der im Einstellungsmenü für die Wirk-/Blindleistung zu hinterlegenden Werte müssen vom örtlichen Netzbetreiber zur Verfügung gestellt werden. Halten Sie mit ihm Rücksprache, bevor Sie Einstellungen vornehmen.

7.3.6.4.1 Leistungsbegrenzung

Benutzer können den Prozentsatz der aktuellen oder Nennleistung festlegen, um die Ausgangsleistung des Wechselrichters zu begrenzen. Der Wechselrichter startet die Aktion, sobald der Modus vom Benutzer auf "ON" gestellt wurde. Diese Funktion ist für Italien CEI 0-21 und Italien A70 verfügbar.

Active Power Control	21 Jun 2010 13:50
Set Point Actual/Rated Power Mode	[100] % [Rated] [OFF]

Hinweis: Erläuterungen zur Funktion Istleistung/Nennleistung finden Sie in Abbildung 7.18.

Abb. 7.28.: Einstellungsseite für die Leistungsbegrenzung

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Set point	0 100 %	Legt die Leistungsreduzierung auf den eingestell- ten Wert fest. Der Wert wird mit dem Wert Gesp. Leist.begr. multipliziert.
Actual/Rated	Actual Rated	Wählt aktuelle oder Nennleistung
Mode	ON OFF	Schaltet die Funktion ein und aus.

7.3.6.4.2 Leistung/Frequenz

Diese Funktion ist für CEI 0-21 und A70 verfügbar. Die nachstehende Abbildung veranschaulicht das Verhalten dieser Funktion. Beachten Sie, dass sich die Kennlinien für die italienischen CEI 0-21- und A70-Netze von denen für die deutschen LVD- und MVD-Netze unterscheiden.

Mit dieser Funktion können Benutzer eine Leistungsreduzierung als Prozentsatz der maximalen Leistung einstellen.

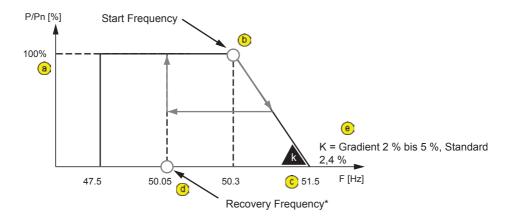


Abb. 7.29.: Kennlinie Leistung / Frequenz

	Active Power Control	2	1. Jun 201	0	13:50
a	Actual/Rated Power	ſ	Actual	1	
6	Start Frequency	[50.30	j	Hz
C	Stop Frequency	[]	Hz
d	Recovery Frequency	[]	Hz
е	Gradient	[2.4]	%
	Recovery Time	[300.00]	s
	Mode	[ON]	

HINWEIS

Die Funktion Leistung/ Frequenz wird für CEI 0-21 und A70 benötigt. Stellen Sie sicher, dass der Modus auf ON steht und deaktivieren Sie ihn nicht.

Abb. 7.30.: Leistung/Frequenz

^{*} Die Recovery Frequency ist in den Netzeinstellungsparametern standardmäßig mit 49,9 - 50,1 Hz definiert.

Bedienung des PV-Wechselrichters

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Actual / Rated Power		Istleistung wird Standardwert
Start frequency	50 - 55 Hz	50,3 Hz wird Standardwert. Dies ist die Frequenz, bei der die Leistungsreduzierung gestartet wird.
Stop frequency		Frequenz, bei der die Leistung = 0 ist. Dieser Wert errechnet sich aus dem Gradienten und der Startfrequenz.
Recovery frequency	Nicht einstellbar	
Gradient	2,0 5,0 %	Standardwert ist 2,4 %
Recovery Time	300 Sekunden	
Mode	ON OFF	Schaltet die Funktion ein und aus

7.3.6.4.3 Konstante cos

Diese Funktion ist für CEI 0-21 oder A70 nicht verfügbar.

$7.3.6.4.4 \cos \varphi(P)$

Diese Funktion ist für Italien CEI 0-21 und Italien A70 verfügbar.

Mit dieser Funktion kann der Solar-Wechselrichter den Leistungsfaktor als Funktion der tatsächlich gelieferten Wirkleistung regeln.

Das folgende Diagramm ist ein Einstellungsbeispiel für die Werte:

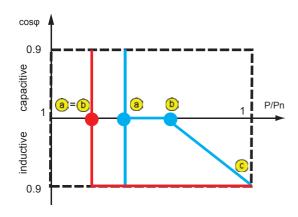


Abb. 7.31.: $\cos\varphi(P)$ -Kennlinie

Das $\cos \varphi(P)$ -Diagramm hat zwei mögliche Kennlinien: die blaue (Standard-)Kennlinie A und die rote Kennlinie B. Pn = Nennleistung

Kennlinie A (blau in Abbildung 6.30)

A wird von Plock-out = Wert des örtlichen Netzbetreibers und $cos\phi$ = 1 bestimmt B wird von Plock-in = Wert des örtlichen Netzbetreibers und $cos\phi$ = 1 bestimmt C wird von P = Pn und cos = $cos\phi$ max bestimmt

Kennlinie B (rot in Abbildung 6.30)

A wird von Plock-out =P = Wert des örtlichen Netzbetreibers und $\cos \varphi$ = 1 bestimmt B wird von Plock-in = Wert des örtlichen Netzbetreibers und $\cos \varphi$ = 1 bestimmt C wird von P = Pn und \cos = $\cos \varphi$ max bestimmt

Wichtig:

Wenn Plock-out = Plock-in, entspricht der Kurvenverlauf Kennlinie B. Wenn Plock-out ≠ Plock-in, entspricht der Kurvenverlauf Kennlinie A.

Reactive Power Control	21. Jun 2010 13:50		
Upper limit - cosφ]	1.00	1
Lower Power		45] %
C Lower limit - cosφ D Upper Power]	Ind 0.90 90] 1%
Ţ			
Lock-in Voltage	[241.5] V

Reactive Power Control		21. Jun 201	.0 13:50
Lock-out Voltage	[230.0] v
Mode	[OFF	1

Abb. 7.32.: Einstellungsseite für cos $\varphi(P)$

Hinweise:

Die Parameterbezeichnungen in den Formeln auf der vorhergehenden Seite unterscheiden sich von den Bezeichnungen auf der Menüseite.

Kennlinie A (blau) Abbildung 6.30

Punkt A = Plock-out = Untere Leistung

Punkt B = Plock-in = Obere Leistung

Punkt C = untere Begrenzung • cosφ

Wenn untere Leistung nicht gleich obere Leistung, entspricht der Kurvenverlauf Kennlinie A.

Kennlinie B (rot) Abbildung 6.30

Punkt A (untere Leistung) = Punkt B (obere Leistung)

Punkt C = untere Begrenzung • cosφ

Wenn untere Leistung = obere Leistung, folgt der Kurvenverlauf Kennlinie B.

Bedienung des PV-Wechselrichters

Einstellbare Parameter für cos $\varphi(P)$

Parameter	Einstellbare Werte	Kennlinie A	Kennlinie B		
Upper limit - cos φ	Ind 0,80 Kap 0,80	Kap 1,0	Kap 1,0		
Lower Power	0 100 %	Es werden 45 % angezeigt, jedoch an vom Netzbetreiber vorgeschriebenen Wert anzupassen	sollte oberer Leistung entsprechen		
Lower limit - cos φ	Ind 0,80 Kap 0,80	Ind 0,90	Ind 0,90		
Upper Power	0 100 %	Es werden 90 % angezeigt, jedoch an vom Netzbetreiber vorgeschriebenen Wert anzupassen	sollte unterer Leistung entsprechen		
Lock-in Voltage*	230-253 V	Standardwert ist 241,5 V, entspricht 1,05 Vn (\(\) =230 V)			
Lock-out Voltage*	207-230 V	Standardwert ist 230 V (einstellbar auf 0,98 Vn bis Vn; Vn = 230 V). Wenn Netzspannung ≤ Lock-out-Spannung			
Mode	ONIOFF	Schaltet die Funktion ei stellung ist AUS.	n und aus. Standardein-		

^{*}Diese Werte können nur bei Länderauswahl Italien/CEI 0-21 oder Italien/A70 eingestellt werden. Das bedeutet, der Wechselrichter speist Blindleistung abhängig von der Wirkleistung ein, sobald die Netzspannung die Lock-in-Spannung übersteigt. Unterschreitet die Netzspannung die Lock-out-Spannung, regelt der Wechselrichter wieder lediglich die Wirkleistung.

Mit Ausnahme von Italien erfolgt die Regelung von $\cos \varphi(P)$ nicht über die Netzspannung.

7.3.6.4.5 Konstante Blindleistung

Diese Funktion ist für Italien CEI 0-21 und Italien A70 verfügbar.

Mit dieser Funktion kann eine Konstante cos Blindleistung festgelegt werden.

Reactive Power Control	21	L. Jun 20	10:	L3:50
Reactive Power (Q/Sn)	[0	1	%
Mode	[OFF	1	

Abb. 7.33.: Einstellungsseite für Konstante Blindleistung

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Reactive power Q/Sn	-60 +60 %	Blindleistungsverhältnis in Bezug auf Scheinlei-
	inductive capacitive	stung. Geben Sie den vom Netzbetreiber vorge-
		schriebenen Wert ein.
Mode	ONIOFF	Schaltet die Funktion ein und aus

7.3.6.4.6 Q(V)

Diese Funktion ist für Italien CEI 0-21 und Italien A70 verfügbar.

Mit dieser Funktion kann das Blindleistungsverhältnis Q/Sn auf eine Spannung V eingestellt werden.

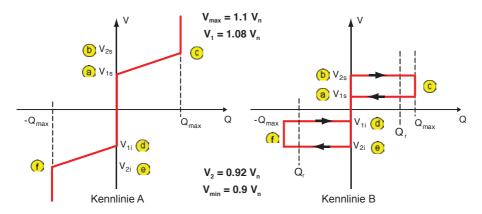


Abb. 7.34.: Q(V)

	Reactive Power Control	21. Jun 2010 13:50
a	V1s	[248.4] V
(b	V2s	[253.0] V
C	Qs limit	[Ind 44] %
d	V 1 i	[211.6] V
(e	V2i	[207.0] V
f	Qi limit	[Cap 44] %

Hinweis: Qs limit und Qi limit errechnen sich auf der Basis von Q/Sn.

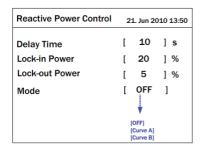


Abb. 7.35.: Einstellungsseite für Q(V)

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Qs limit	0 60%	Ind 44 %
(Q/Sn)	inductive capacitive	
Qi limit	0 60 %	Kap 44%
(Q/Sn)	inductive capacitive	
V1s	230 264,5 V	248,4 V
V2s	230 264,5 V	253 V
V1i	184 230 V	211,6 V
V2i	184 230 V	207 V
Plock-in*	10 100 %	Es werden 20 % angezeigt, jedoch Wert des Netzbetreibers verwenden
Plock-out*	5 10 %	Es werden 5 % angezeigt, jedoch Wert des
		Netzbetreibers verwenden
Delay time	0 120 s	10 s
Mode	Curve A I Curve B I	Schaltet zwischen den Kennlinien A und B sowie
	OFF	AUS hin und her.

^{*}Nur einstellbar und aktiviert bei Länderauswahl Italien/CEI 0-21 oder Italien/A70.

7.3.6.4.7 Low Voltage Fault Ride Through (LVFRT)

Diese Funktion ist für CEI 0-21 und A70 verfügbar.

Mit dieser Funktion können die Fault-Ride-Through-Funktionen festgelegt werden.

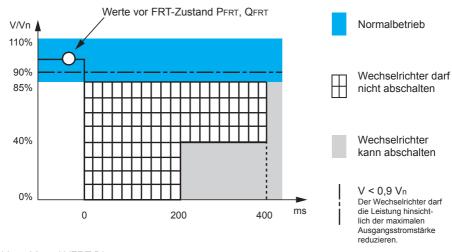


Abb. 7.36.: LVFRT-Diagramm

Bedienung des PV-Wechselrichters

FRT - 1/2	21. Jun 2010	13:50		FRT - 2/2		21. Jun 20	10 13:50
Dead band - Vh	[+10]	%		t3	[0.50] s
Dead band - VI	[-15]	%	\bigcirc	Mode	[ON	1
K factor	[2.0]		→				
Vdrop	[0]	%	←				
t 1	[300]	ms					
U1	[40]	%					
t2	[0.50]	s					

Abb. 7.37.: Einstellungsseite für Fault Ride-Through

Einstellbare Parameter

Parameter	Einstellbare Werte	Beschreibung
Dead band - Vhigh	+0 +20 %	10 %
Dead band - Vlow	-20 0 %	-15 %
K factor	Nicht anpassen	
Vdrop	Nicht anpassen	
t1	Nicht anpassen	
U1	Nicht anpassen	
t2	Nicht anpassen	
t3	Nicht anpassen	
Mode	ON OFF	Schaltet die Funktion EIN und AUS

7.3.6.5 Blindleistungsregelung für Slowenien (SONDO) für Modelle 15 / 20 und 30 TL

Wenn beim ersten Start Slowenien aus der Länderauswahlliste gewählt wird, können die Blindleistungsparameter für Q(V) nach zwei Kennlinien angepasst werden, Klasse B und Klasse C. Die slowenischen Vorgaben sind als SONDO oder SOIEDN bekannt (Anweisungen für den Betrieb von Anlagen für Stromverteilungsnetzwerke). Q(V) ist das Blindleistungsverhältnis von Q/S_n in Abhängigkeit von der Spannung V.

ACHTUNG

Schäden an Maschinen und Geräten können auftreten.

- Lassen Sie Einstellungen an der Blindleistung nur von ausgebildeten Elektrotechnikern mit entsprechender fachlicher Qualifikation vornehmen
- ▶ Die Einstellungen können die Energieerzeugung beeinflussen.
- ▶ Einige der im Einstellungsmenü für die Blindleistung zu hinterlegenden Werte müssen vom örtlichen Netzbetreiber zur Verfügung gestellt werden. Halten Sie mit ihm Rücksprache, bevor Sie Einstellungen vornehmen

HINWEIS

Der Wechselrichter kann nur Blindleistung einspeisen, wenn Klasse B oder Klasse C eingestellt ist und die Leistungsabgabe mehr als 5 % von Pn beträgt.

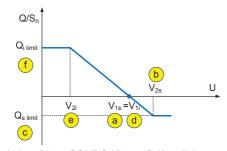


Abb. 7.38.: SONDO Klasse B-Kennlinie

Bedienung des PV-Wechselrichters

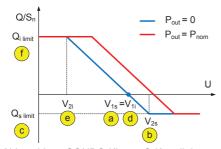


Abb. 7.39.: SONDO Klasse C-Kennlinie

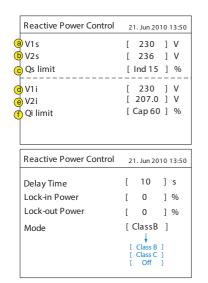


Abb. 7.40.: Einstellungen für Q(V)

Einstellbare Parameter (Klasse C)

Parameter	Einstellbare Werte	Beschreibung
Qs limit	0 63 %	Ind 15 %
(Q/Sn)	inductive	_
Qi limit	0 63%	Kap 60 %
(Q/Sn)	capacitive	
V1s	230 264,5 V	Standard 230 V
V2s	230 264,5 V	Standard 236 V (Begrenzung 264,5 / V1s < V2s)
V1i	184 230 V	Standard 230 V
V2i	184 230 V	Standard 207 V (V2i < V1i)
Lock-in Power	0	entfällt
Lock-out Power	0	entfällt
Delay time	0 120 s	10 s
Mode	Class B I Class C I OFF	Schaltet zwischen Klassen B und C sowie AUS hin und her.
	Oll	Tilli uliu liel.

Hinweis: Zum Zeitpunkt der Drucklegung dieses Handbuchs war SONDO Klasse C im Wechselrichter implementiert, Klasse B jedoch noch nicht. Einzelheiten über die Verfügbarkeit der Einstellung Klasse B finden Sie auf unserer Website www.solar-inverter.com. Wir werden das Zertifikat für die SONDO Klasse B veröffentlichen, sobald es verfügbar ist.

8. Wartung

Um den normalen Betrieb von PV-Wechselrichtern sicherzustellen, prüfen Sie diese regelmäßig, mindestens alle 6 Monate. Überprüfen Sie, ob alle Anschlüsse, Schrauben und Kabel sicher befestigt sind. Wenn Beschädigungen an Teilen vorliegen, wenden Sie sich an einen qualifizierten Techniker, um diese reparieren oder austauschen zu lassen. Um sicherzustellen, dass sich keine Fremdkörper in den Warmluftauslässen befinden, lassen Sie diese alle 6 Monate von qualifizierten Technikern reinigen.

WARNUNG

Unfälle mit schweren oder tödlichen Verletzungen können die Folge sein!

Trennen Sie vor Wartungsarbeiten am Wechselrichter den Wechselund Gleichstrom ab, um das Risiko von Stromschlägen zu vermeiden!

8.1 Reinigen der Lüfter

Lösen Sie zunächst die 4 Schrauben in den vier Ecken der Lüfterplatte (unten eingekreist). Beim Entfernen der Platte vom Wechselrichter werden 4 Sätze Lüfteranschlüsse sichtbar. Funktioniert ein Lüfter nicht ordnungsgemäß, muss die gesamte Lüftereinheit ausgetauscht werden. Rufen Sie die Support-Hotline an, um Unterstützung bei der Beschaffung einer neuen Ersatz-Lüftereinheit zu erhalten.

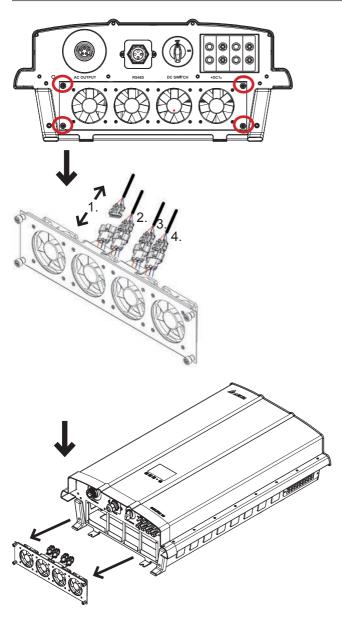
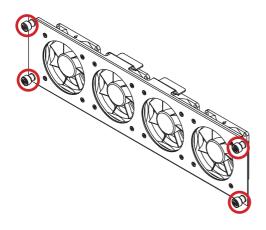



Abb. 8.1.: Schritte zum Abnehmen der Lüfterplatte vom Wechselrichter

8.2 Austausch einer Lüftereinheit

Fällt einer der Lüfter aus, muss eine neue Lüftereinheit bestellt und ausgetauscht werden. Nehmen Sie die Lüfterplatte am defekten Lüfter ab wie in Abbildung 8.1 gezeigt. Die Lüfterplatte ist mit vier Fingerschrauben (unten eingekreist) am Wechselrichter befestigt. Lösen Sie die 4 Fingerschrauben und nehmen Sie die Lüfterplatte vorsichtig vom Wechselrichter ab. Ziehen Sie danach die vier Steckerpaare des Lüfters (bzw. das eine Steckerpaar des Lüfters bei den Modellen 6.0 / 8.0 / 10 / 12 TL) ab. Führen Sie diese Schritte in umgekehrter Reihenfolge aus, um die neue Lüftereinheit einzubauen. Rufen Sie die Support-Hotline an, um Unterstützung bei der Beschaffung einer neuen Ersatz-Lüftereinheit zu erhalten. Die Teilenummern für die Lüftereinheiten sind Tabelle 8.1 zu entnehmen.

Hinweis: Die abgebildete Lüfterplatte entspricht den Modellen 15 TL, 20 TL und 30 TL. Die Lüfterplatte des Modells 6.0 TL/8.0 TL/10 TL/12TL verfügt über nur einen Lüfter.

Abb. 8.2 : Lüftereinheit abnehmen

	Bezeichnung	Teilenummer Delta
	Lüftereinheit für SOLIVIA 6.0 TL, 8.0 TL, 10 TL und 12 TL	EOE90000532

	2	

Bezeichnung Teilenummer Delta

Lüftereinheit für SOLIVIA 15 EOE90000530 TL und 20 TL

Lüftereinheit für SOLIVIA 30 TI

EOE90000531

Tabelle 8.1.: Teilenummern der Lüftereinheit

8.3 Reinigen der Entlüftungen

Abb. 8.3 unten zeigt das Abnehmen der Entlüftungsabdeckungen zum Reinigen. Entfernen Sie zunächst die 4 Schrauben, mit denen die Entlüftungsabdeckung am Gehäuse des Wechselrichters befestigt ist. Nehmen Sie dann die Entlüftungsabdeckung vom Wechselrichter ab. Reinigen Sie die abgenommene Entlüftungsabdeckung auf beiden Seiten. Nach der Reinigung einer Entlüftung fahren Sie mit der Entlüftung auf der gegenüberliegenden Seite fort und reinigen Sie diese auf dieselbe Weise. Bringen Sie die Entlüftungsabdeckungen nach dem Reinigen wieder sicher an. Die Reinigung der Entlüftungsabdeckungen sollte wie oben beschrieben regelmäßig durchgeführt werden, um eine optimale Leistung des Wechselrichters zu ermöglichen.

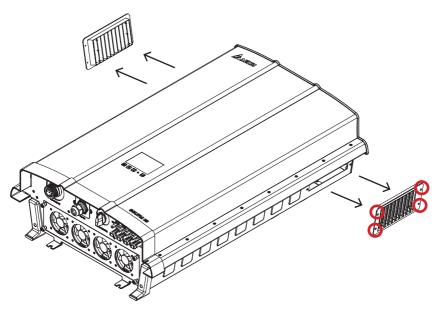


Abb. 8.3.: Abnahme der Entlüftungsabdeckungen zum Reinigen

9. Messwerte und Meldungen

9.1 Messwerte

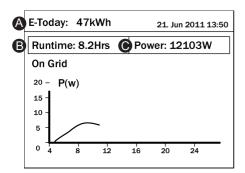
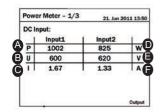
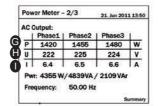




Abb. 9.1.: Messwerte auf der Startseite

	Messwert	Beschreibung
Α	E-Today	Gesamte heute erzeugte Energie
В	Runtime	Gesamtbetriebszeit des PV-Wechselrichters am betreffenden Tag
С	Power	Derzeit erzeugte Leistung

Tabelle 9.1.: Messwerte auf der Startseite und Beschreibungen

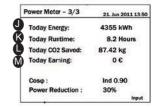
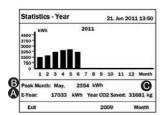



Abb. 9.2.: Messwerte auf den Seiten für Power Meter

	Messwert	Beschreibung
Α	Input 1 P	Leistung am DC-Eingang 1
В	Input 1 V	Spannung am DC-Eingang 1
С	Input 1 I	Stromstärke am DC-Eingang 1
D	Input 2 P	Leistung am DC-Eingang 2
Е	Input 2 V	Spannung am DC-Eingang 2
F	Input 2 I	Stromstärke am DC-Eingang 2
G	Output P	Leistung am AC-Ausgang
Н	Output V	Spannung am AC-Ausgang
I	Output I	Stromstärke am AC-Ausgang
J	Today Energy	Insgesamt akkumulierte erzeugte Elektrizität am Tag
K	Today Runtime	Insgesamt akkumulierte Betriebszeit am Tag
L	Total CO2 saved	Insgesamt akkumulierte bis zum jetzigen Zeitpunkt
		eingesparte CO2-Emissionen
M	Today Earning	Insgesamt akkumulierter Ertrag in Euro für den Tag

Tabelle 9.2.: Messwerte auf den Seiten für Power Meter und Beschreibungen

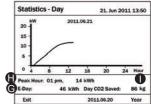


Abb. 9.3.: Messwerte auf den Seiten für Statistiken

	Messwert	Beschreibung
Α	E-Year	Insgesamt akkumulierte erzeugte Elektrizität in einem Jahr
В	Peak Month	Der Spitzenmonat der Elektrizitätserzeugung im vergangenen Jahr
С	Year CO2 saved	Insgesamt akkumulierte in einem Jahr eingesparte CO2-Emissionen
D	E-Month	Insgesamt akkumulierte erzeugte Elektrizität in einem Monat
Е	Peak Day	Der Spitzentag der Elektrizitätserzeugung im vergangenen Monat
F	Month CO2 saved	Insgesamt akkumulierte in einem Monat eingesparte CO2-Emissionen
G	E-Day	Insgesamt akkumulierte erzeugte Elektrizität an einem Tag
Н	Peak Hours	Die Spitzenstunde der Elektrizitätserzeugung am vergangenen Tag
I	Day CO2 saved	Insgesamt akkumulierte an einem Tag eingesparte CO2-Emissionen

Tabelle 9.3.: Messwerte auf der Seite für Statistiken und Beschreibungen

Abb. 9.4.: Messwerte auf den Seiten für aktuellen Daten

	Messwert	Beschreibung
Α	Input 1 Volt. maximum	Maximale Spannung am DC-Eingang 1
В	Input 1 I maximum	Maximale Stromstärke am DC-Eingang 1
С	Input 1 P maximum	Maximale Leistung am DC-Eingang 1
D	Input 2 Volt. maximum	Maximale Spannung am DC-Eingang 2
Е	Input 2 I maximum	Maximale Stromstärke am DC-Eingang 2
F	Input 2 P maximum	Maximale Leistung am DC-Eingang 2
G	L1 Volt. maximum	Maximale Spannung in AC-Phase L1
Н	L1 I maximum	Maximale Stromstärke in AC-Phase L1
1	L1 P maximum	Maximale Leistung in AC-Phase L1
J	L2 Volt. maximum	Maximale Spannung in AC-Phase L2
K	L2 I maximum	Maximale Stromstärke in AC-Phase L2
L	L2 P maximum	Maximale Leistung in AC-Phase L2
М	L3 Volt. maximum	Maximale Spannung in AC-Phase L3
Ν	L3 I maximum	Maximale Stromstärke in AC-Phase L3
0	L3 P maximum	Maximale Leistung in AC-Phase L3
Р	Output Volt. maximum	Maximale Spannung des 3-Phasen-Wechselstroms
Q	Output I maximum	Maximale Stromstärke des 3-Phasen-Wechselstroms
R	Output P maximum	Maximale Leistung des 3-Phasen-Wechselstroms

Tabelle 9.4.: Messwerte auf den Seiten für aktuelle Daten und Beschreibungen

		21. J	21. Jun 2011 13:5		
Temperatui	re	Max.	Min.		
Inside	(℃)	A 59.3	15.7 B		
Heatsink - 1	(°C)	75.5	15.3		
Heatsink - 2	(°C)	74.2	15.2		
Heatsink - 3	(°C)	G 73.6	15.2		

Abb. 9.5.: Messwerte der Temperatur auf den Seiten für aktuellen Daten

	Temperature	
Α	Inside max.	Maximaler Innentemperaturwert des Wechselrichters
В	Inside min.	Minimaler Innentemperaturwert des Wechselrichters
С	Heatsink-1 max.	Maximaler Temperaturwert von Kühlkörper 1
D	Heatsink-1 min.	Minimaler Temperaturwert von Kühlkörper 1
Е	Heatsink-2 max.	Maximaler Temperaturwert von Kühlkörper 2
F	Heatsink-2 min.	Minimaler Temperaturwert von Kühlkörper 2
G	Heatsink-3 max.	Maximaler Temperaturwert von Kühlkörper 3
Н	Heatsink-3 min.	Minimaler Temperaturwert von Kühlkörper 3

Tabelle 9.5.: Messwerte für Temperatur und Beschreibung

9.2 Meldungen

Meldung	Rote LED ein	Rote LED blinkt	Beschreibung
Fehler			
AC Freq High	X		Netzfrequenz liegt über Nennwert
AC Freq Low	X		Netzfrequenz liegt unter Nennwert
Grid Quality	X		Schlechte Netzqualität
HW Connect Fail	X		Netzfolge kann nicht erkannt werden
No Grid	X		Netzspannung <100 V
AC Volt Low	Х		Spannung in Phase L1, L2 oder L3 liegt unter Nennwert
AC Volt High	Х		Spannung in Phase L1, L2 oder L3 liegt über Nennwert
Solar1 High	X		DC1-Spannung >1.000 V
Solar2 High	X		DC2-Spannung >1.000 V
Ausfälle			
HW DC Injection	X		DC-Einspeisung liegt über Nennwert
Temperature	Χ		Umgebungs-, Kühlkörper- oder Dros- seltemperatur liegt über oder unter dem normalen Betriebsbereich
HW NTC1 Fail	Х		Temperatursensor 1 ist ausgefallen
HW NTC2 Fail	Х		Temperatursensor 2 ist ausgefallen
HW NTC3 Fail	Х		Temperatursensor 3 ist ausgefallen
HW NTC4 Fail	X		Temperatursensor 4 ist ausgefallen
Firmware Fail	Х		Firmware ist inkompatibel
HW DSP ADC1	X		DSP A/D-Ausfall – Vnetz oder laus
HW DSP ADC2	Х		DSP A/D-Ausfall – Vein oder Vbus
HW DSP ADC3	Х		DSP A/D-Ausfall – lein oder Iboost
HW Red ADC1	Х		Red. A/D-Ausfall – Vnetz oder Vinv
HW Red ADC2	X		Red. A/D-Ausfall – laus_dc
HW Efficiency	Х		Wirkungsgrad ist anormal
HW COMM2	Х		Kommunikation mit red. CPU nicht möglich
HW COMM1	Х		Kommunikation mit DSP nicht möglich
Ground Current	Х		Reststrom liegt über Nennwert
Insulation	Х		Anlagenisolierung ist ausgefallen
HW Connected Fail	Х		Internes AC-Kabel ist getrennt
RCMU Fail	X		HW RCMU-Ausfall

Meldung	Rote LED ein	Rote LED blinkt	Beschreibung
Relay Test Short	Х		Mindestens ein Relais ist defekt – Kurz- schluss
Relay Test Open	Χ		Mindestens ein Relais ist defekt – offen
Bus Unbalance	Х		Bus-Spannung ist ungleichmäßig
HW Bus OVR	Х		Spannung an BUS oder BUS+ oder BUS– liegt über Nennwert
HW Bus UVR	Х		Spannung an BUS+ oder BUS- liegt unter Nennwert
AC Current High	Х		Stromstärke in Phase L1, L2 oder L3 liegt über Nennwert
HW CT A Fail	Х		Ausfall des Stromstärkesensors L1
HW CT B Fail	Х		Ausfall des Stromstärkesensors L2
HW CT C Fail	Х		Ausfall des Stromstärkesensors L3
HW AC OCR	Х		Ausgangsstromstärke liegt über Hardwaregrenzwert
Inverter Failure	Х		Ausfall des Wechselrichters
HW ZC Fail	Х		Ausfall der HW-Nulldurchgangsschaltung
DC Current High	Х		DC1- oder DC2-Stromstärke liegt über Nennwert
Warnungen			
HW FAN		Х	Lüfter ist blockiert oder während des Betriebs ausgefallen
Solar1 Low		Х	DC1-Spannung liegt unter Nennwert
Solar2 Low		Х	DC2-Spannung liegt unter Nennwert

10. Fehlerbehebung

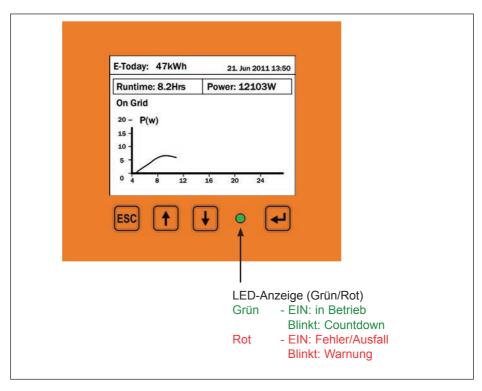


Abb. 10.6.: LED-Anzeige

Meldung	Rote LED ein	Rote LED blinkt	Lösung
Fehler			
AC Freq High	Х		Netzfrequenz am Wechselrichter- Anschluss überprüfenLändereinstellung überprüfen
AC Freq Low	Х		 Netzfrequenz am Wechselrichter- Anschluss überprüfen Ländereinstellung überprüfen

Meldung	Rote LED Rote LED ein blinkt	Lösung
Grid Quality	Х	 Klirrfaktor der Netzspannung überprüfen Der Netzanschluss des Wechselrichters muss möglicherweise weiter von einer nicht-linearen Last entfernt werden.
HW Connect Fail	Х	 AC-Anschluss überprüfen, muss anhand der Anweisungen im Handbuch erfolgen Installationstechniker oder technischen Support von DELTA rufen
No Grid	Х	 Anschluss des AC-Steckers überprü- fen, sicherstellen, dass Verbindung mit dem Wechselrichter besteht und der AC-Unterbrecher eingeschaltet ist
AC Volt Low	Х	 Verbindung der Netzspannung mit dem Wechselrichter-Anschluss überprüfen Ländereinstellung überprüfen
AC Volt High	Х	 Verbindung der Netzspannung mit dem Wechselrichter-Anschluss überprüfen Ländereinstellung überprüfen
Solar1 High	Х	 Solaranlageneinstellung ändern und Voc auf Wert unter 1000 VDC festlegen
Solar2 High	Х	 Solaranlageneinstellung ändern und Voc auf Wert unter 1000 VDC festlegen
Ausfälle		
HW DC Injection	х	 Netzwellenform überprüfen. Der Netzanschluss des Wechselrichters muss möglicherweise weiter von der nicht-linearen Last entfernt werden. Installationstechniker oder technischen Support von DELTA rufen
Temperature	Χ	 Anlagenumgebung überprüfen
HW NTC1 Fail	Х	 Installationstechniker oder techni- schen Support von DELTA rufen
HW NTC2 Fail	X	 Installationstechniker oder techni- schen Support von DELTA rufen
HW NTC3 Fail	X	 Installationstechniker oder techni- schen Support von DELTA rufen
HW NTC4 Fail	X	 Installationstechniker oder techni- schen Support von DELTA rufen

Fehlerbehebung

Meldung	Rote LED Rote LED ein blinkt	Lösung
Firmware Fail	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
HW DSP ADC1	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
HW DSP ADC2	Х	 Installationstechniker oder techni- schen Support von DELTA rufen
HW DSP ADC3	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
HW Red ADC1	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
HW Red ADC2	Х	 Installationstechniker oder techni- schen Support von DELTA rufen
HW Efficiency	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
HW COMM2	X	 Installationstechniker oder techni- schen Support von DELTA rufen
HW COMM1	X	 Installationstechniker oder techni- schen Support von DELTA rufen
Ground Current	X	 Isolierung der Solaranlagen-Eingänge überprüfen
		 Kapazität überprüfen (+<-> GND und -<-> GND), muss <2,5 μF sein. Bei Bedarf externen Transformator installieren
		 Installationstechniker oder techni- schen Support von DELTA rufen
Insulation	Х	 Isolierung der Solaranlagen-Eingänge überprüfen
		 Installationstechniker oder techni- schen Support von DELTA rufen
HW Connected Fail	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
RCMU Fail	Х	► Installationstechniker oder techni- schen Support von DELTA rufen
Relay Test Short	Х	► Installationstechniker oder technischen Support von DELTA rufen
Relay Test Open	Х	► Installationstechniker oder technischen Support von DELTA rufen
Bus Unbalance	Х	 Eingangsanschlüsse überprüfen Isolierung der PV-Anlage überprüfen Installationstechniker oder technischen Support von DELTA rufen

Meldung	Rote LED ein	Rote LED blinkt	Lösung
HW Bus OVR	Х		 Eingangsanschlüsse überprüfen Isolierung der PV-Anlage überprüfen Installationstechniker oder technischen Support von DELTA rufen Solaranlageneinstellung ändern und Voc auf Wert unter 1000 VDC festlegen
AC Current High	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
HW CT A Fail	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
HW CT B Fail	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
HW CT C Fail	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
HW AC OCR	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
Inverter Failure	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
HW ZC Fail	Х		► Installationstechniker oder techni- schen Support von DELTA rufen
DC Current High	Х		 Installationstechniker oder techni- schen Support von DELTA rufen, wenn normaler Betrieb nicht wieder aufgenommen wird
Warnungen			
HW FAN		Х	 Im Lüfter/in den Lüfter festgeklemmten Fremdkörper entfernen Defekte(n) Lüfter austauschen Anschlüsse aller Lüfter überprüfen

Fehlerbehebung

Meldung	Rote LED ein	Rote LED blinkt	Lösung
Solar1 Low		Х	 Verbindung der DC1-Spannung mit dem Wechselrichter-Anschluss überprüfen Alle Schaltergeräte in Boost1 über- prüfen
Solar2 Low		X	 Verbindung der DC2-Spannung mit dem Wechselrichter-Anschluss überprüfen Alle Schaltergeräte in Boost2 über- prüfen

Tabelle 10.1.: Fehlerbehebungsmeldung/Lösungsbeschreibung

11. Außerbetriebnahme

Schritte zur Außerbetriebnahme

Wenn ein SOLIVIA TL Wechselrichter zu Rückgabe- oder Wartungszwecken außer Betrieb genommen werden muss, gehen Sie wie folgt vor:

WARNUNG

Es besteht die Gefahr von Unfällen mit schweren oder tödlichen Verletzungen.

Befolgen Sie sich zur Vermeidung von Verletzungen die nachfolgenden Schritte:

- Schalten Sie den AC-Unterbrecher aus, um die Verbindung mit dem Stromnetz zu trennen.
- Schalten Sie den DC-Unterbrecher aus, um die Verbindung mit dem DC-Eingang zu trennen.
- 3. Verwenden Sie den richtigen Spannungsmesser, um zu überprüfen, ob die AC- und DC-Stromanschlüsse völlig stromfrei sind.
- 4. Entfernen Sie sofort die AC-Verkabelung, um die Verbindung mit dem Stromnetz vollständig zu trennen.
- Entfernen Sie die DC-Verkabelung, um die Verbindung mit der PV-Anlage zu trennen.
- Entfernen Sie das Kommunikationsmodul RS485 mit der Computerverbindung.
- Nach Ausführung aller Schritte können Sie den SOLIVIA TL von der Montageplatte abnehmen.

12. Technische Daten

12.1 Spezifikation

		6.0EUT4TL	8.0EUT4TL	10EUG4TL	12EUG4TL
EINGANG (DC)					
Max. empfohlene PV-Leistung ¹⁾	kW _P	7,8	10,0	13,2	15,6
Empfohlener PV-Leistungsbereich	$kW_{_{P}}$	5,5 7,8	7,0 10,0	8,8 13,2	10,4 15,6
Nennleistung	kW	6,3	8,4	10,5	12,6
Betriebsspannung	V	250 1000 V	V		
MPP-Spannungsbereich					
Symmetrische Last (50/50%)	V _{DC}	315 850	280 850	350 850	420 850
Asymmetrische Last (67/33%)	V_{DC}	420 850	330 850	- 350 850	420 850
Asymmetrische Last (33/67%)	V _{DC}	250 850	280 850	- 350 650	420 650
Nennspannung	V_{DC}	635			
Startleistung	W	40			
Maximale Eingangsspannung	V	1000			
Anzahl der Eingänge		4 Eingänge (2 MPP-Tracke	r)	
Max. Stromstärke	Α	20 (10 x 2)	30 (17 x 2)	30 (20 x 2)	30 (20 x 2)
Überspannungskategorie 2)		II			
AUSGANG (AC)					
Max. Scheinleistung 3)	kVA	6,3	8,4	10,0	12,6
Nennscheinleistung	kVA	6,0	8,0	10,0	12,0
Spannungsbereich 4)	V	3 x 230 / 400	V (± 20 %) + I	N + PE (3 Phas	sen, 5 Drähte)
Nennstromstärke	Α	8,7	11,6	14,5	17,4
Max. Stromstärke	A	9,6	12,8	16,0	19,2
Nennfrequenz	Hz	50 / 60			
Frequenzbereich 4)	Hz	50 / 60 ± 5			
Einstellbarer Leistungsfaktor		0,80 Kap 0),80 Ind		
Gesamtklirrfaktor		<3 % bei Ner	nn-Scheinleistu	ıng	
DC-Strom-Einspeisung		<0,5 % Nenn	stromstärke		
Verlustleistung im Nachtbetrieb	W	< 2			
Überspannungskategorie 2)		III			
ALLGEMEINE SPEZIFIKATION					
Maximaler Wirkungsgrad	%	98,2	98,2	98,3	98,3
EU-Wirkungsgrad	%	97,2	97,4	97,7	97,7
Betriebstemperatur	°C	–25 +60	–20 +60		
Abregelung bei	°C	> 40			
Lagertemperatur	°C	-25 +70			
Relative Luftfeuchtigkeit	%	5 95 (nicht kondensierend)			
Max. geografische Betriebshöhe	m	2000			

		6.0EUT4TL	8.0EUT4TL	10EUG4TL	12EUG4TL
MECHANISCHE AUSFÜHRUNG		0.0201412	0.0201412	10200412	12200412
Größe (L x B x T)	mm	620 x 625 x 2	275		
Gewicht	kg	38	40	40	40
Gehäuse		Pulverbeschi	chtetes Alumir	nium	
Kühlung		Lüfter		-	
AC-Anschluss		Amphenol C	16-3		
DC-Anschlusspaare		4 MC4-Mehr	fachkontakte		
Kommunikationsschnittstellen		2 RJ45/RS48	35		
DC-Trennung		Integriert			
Display		Grafisches S	chwarz-Weiß-	LCD	
NORMEN/RICHTLINIEN					
Schutzgrad 5)		Kühlerbereic	h IP55 / Elektr	onik IP65	
Sicherheitsklasse		1			
Konfigurierbare Auslösepara- meter		Ja			
Isolierungsüberwachung		Ja			
Überlastverhalten		Stromstärkel	egrenzung, Le	eistungsbegrer	nzung
Sicherheit		IEC62109-1/	-2, CE-Konforr	nität	
Netzschnittstelle		VDE-AR-N 4015, VFR 2013, VFR 2014	VDE-AR-N 4105	VDE-AR-N 4105, VDE 0126- 1-1/A1, EN 50438, UTE C15- 712-1, VFR 2013, VFR 2014, Synergrid C10/C11 Juni 2012, CEI 0-21	VDE-AR-N 4105
EMV		EN61000-6-2	2, EN61000-6-	3	

¹⁾ Bei Betrieb mit symmetrischen DC-Eingängen (50/50 %)

²⁾ IEC 60664-1, IEC 62109-1

³⁾ Die maximale AC-Scheinleistung gibt die Leistung an, die ein Wechselrichter liefern kann. Diese maximale Scheinleistung muss nicht notwendigerweise erreicht werden.

⁴⁾ AC-Spannung und Frequenzbereich werden anhand der jeweiligen L\u00e4nderbestimmungen programmiert.
⁵⁾ IP55 f\u00fcr K\u00fchlbereich/IP65 f\u00fcr Elektronik

Technische Daten

		15EUG4TL	20EUG4TL	30EUT4TL
EINGANG (DC)		10EUG41L	ZUEUG41L	SUEU141L
Max. empfohlene PV-Leistung ¹⁾	kW₅	19	25	38
Empfohlener PV-Leistungsbe-	KVV _P	19	23	
reich		14 19	18 25	26 38
Nennleistung	kW	15,3	20,4	31
Betriebsspannung	V	250 1.000		
MPP-Spannungsbereich				
Symmetrische Last (50/50%)	V_{DC}	350 800	350 800	480 800
Asymmetrische Last (67/33%)	V_{DC}	- 470 800	480 800	620 800
Asymmetrische Last (33/67%)	V _{DC}	470 600	400 000	
Nennspannung	V_{DC}	650		
Startleistung	W	40		
Absolute Maximalspannung	V	1000		
Anzahl der Eingänge		4 Eingänge (2 MPP-tracker)		6 Eingänge (2 MPP-tracker)
Max. Stromstärke	Α	48 (24 x 2)	60 (30 x 2)	68 (34 x 2)
Überspannungskategorie 2)		II		
AUSGANG (AC)				
Max. Scheinleistung 3)	kVA	15,75	21,0	30,0
Nenn-Scheinleistung	kVA	15,0	20,0	30,0
Spannungsbereich (3 Phasen) 4)	٧	3 x 230 / 400 V (± 20 %) + N + PE (3 Phasen, 5 Drähte)		sen, 5 Drähte)
Nennstromstärke	Α	22	29	43
Max. Stromstärke	Α	25	32	46
Nennfrequenz	Hz	50/60		
Frequenzbereich 4)	Hz	50 / 60 ± 5		
Einstellbarer Leistungsfaktor		0,80 Kap 0,80 Inc	i	
Gesamtklirrfaktor		<3 % bei Nenn-Sch	einleistung	
DC-Strom-Einspeisung		<0,5 % Nennstroms	tärke	
Verlustleistung im Nachtbetrieb	W	< 2		
Überspannungskategorie 2)		III		
ALLGEMEINE SPEZIFIKATION				
Maximaler Wirkungsgrad	%	98,0		98,2
EU-Wirkungsgrad	%	> 97,8		> 97,9
Betriebstemperatur	°C	-20 - +60		
Abregelung bei	°C	> 40		
Lagertemperatur	°C	-20 +70		-25 +70
Relative Luftfeuchtigkeit	%	5 95 (nicht kondensierend)		
Max. geografische Betriebshöhe	m	2000		

		15EUG4TL	20EUG4TL	30EUT4TL
MECHANISCHE AUSFÜHRUNG	}			
Größe (L x B x T)	mm	952 x 625 x 275		
Gewicht	kg	67,2 67,3	2	72,2
Gehäuse		Pulverbeschichtetes Aluminium		
Kühlung		Lüfter		
AC-Anschluss		Amphenol C16-3		Amphenol PPC AC 24
DC-Anschlusspaare		4 MultiContact MC4		6 MultiContact MC4
Kommunikationsschnittstellen		2 RJ45 / RS485		
DC-Trennung		Integriert		
Display		Grafisches Schwarz-Weiß-LCD		
NORMEN/RICHTLINIEN				
Schutzgrad 5)		Kühlerbereich IP55 / Elektronik IP65		
Sicherheitsklasse		1		
Konfigurierbare Auslösepara- meter		Ja		
Isolierungsüberwachung		Ja		
Überlastverhalten		Stromstärkebegrenzung, Leistungsbegrenzung		grenzung
Sicherheit		IEC62109-1/-2, CE-Ko NZS 3100	nformität, AS/	IEC62109-1/-2, CE-Konformität
Netzschnittstelle		VDE-AR-N 4105, BDE 0126-1-1/A1; G59/1-2 240 V), EN 50438; UTI 1, Synergrid C10/C11 RD661/2007, RD1699/0-21, französische Inseln 60 SONDO Klasse C, VFI 2014	(230 und E C15-712- Juni 2012, /2011, CEI Hz, AS 4777,	VDE-AR-N 4105, UTE C15 712-1, VDE 0126-1-1/ A1, CEI 0-21, BDEW, SONDO Klasse C, Syner- grid C10/11 Juni 2012, EN50438, G59/1-2 (230V & 240V), VFR 2013, VFR 2014
EMV		EN61000-6-2; EN61000-6-3; EN61000-3-11, EN61000-3-12, C-Tick		EN61000-6-2; EN61000-6-3, EN61000-3-11, EN61000-3-12

¹⁾ Bei Betrieb mit symmetrischen DC-Eingängen (50/50 %)

²⁾ IEC 60664-1, IEC 62109-1

³⁾ Die maximale AC-Scheinleistung gibt die Leistung an, die ein Wechselrichter liefern kann. Diese maximale Scheinleistung muss nicht notwendigerweise erreicht werden.

⁴⁾ AC-Spannung und Frequenzbereich werden anhand der jeweiligen Länderbestimmungen programmiert.

⁵⁾ IP55 für Kühlbereich/IP65 für Elektronik

Technische Daten

12.2 Empfehlungen für Kabel

Netzkabel		
Nennstrom	Querschnitt	Berechnung für empfohlenen max. Kabelverlust
AC <40 A (6.0 TL bis 20 TL) <60 A (30 TL)	Berechnung auf Grundlage der benötigten Länge, des eingesetzten Materials, der Kabelverluste usw.	<1 %
DC 34 A	6 mm ²	<1 %
Kommunikationskabel		
RS485-Modular-Kommunikation	onskabel/gekreuzt, 8-polig	

12.3 Erdungssysteme

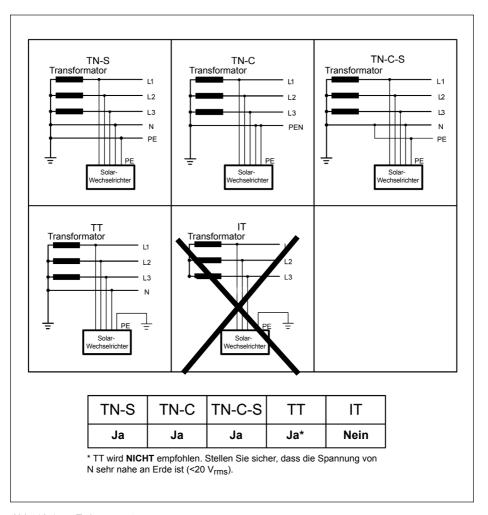


Abb. 12.1.: Erdungssysteme

12.4 Modelle 15 TL und 20 TL mit älterem DC-Eingangsfeld

Es wird darauf hingewiesen, dass die Wechselrichtermodelle 15 TL und 20 TL zwei verschiedene DC-Eingangsanschlusskonfigurationen aufweisen; die Funktionsweise ist jedoch gleich und die DC-Anschlüsse sind vom selben Typ. Den nachfolgenden Abbildungen ist die Anordnung der DC-Eingänge für die Modelle 15 TL und 20 TL zu entnehmen, die vor bzw. nach dem 1. September 2012 hergestellt wurden.

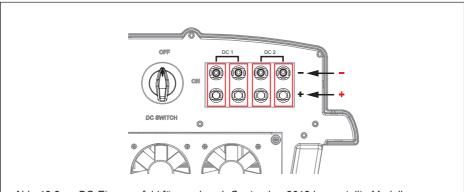


Abb. 12.2.: DC-Eingangsfeld für vor dem 1. September 2012 hergestellte Modelle

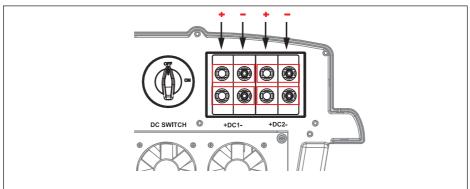


Abb. 12.3.: DC-Eingangsfeld für nach dem 1. September 2012 hergestellte Modelle

13. Zertifikate

EC Declaration of Conformity

Delta Energy Systems (Germany) GmbH Tscheulinstr. 21, D - 79331 Teningen, Germany Producer. Address:

Solar Inverter for Grid operation Product description:

EOE48030458 SOLIVIA30EUT4TL Model

2004/108/EG Council Directive on the approximation of the lavs of the Member States relating to electromagnetic The product described above in the form as delivered is in conformity with the provisions of the following European Directives:

EM (2004-11:2004-A1:2006 EM (2004-41:2004-A1:2006 EM (2004-42:2001 EM (2004-42:201 EM (2004-41:201 EM (2004-41:201 EM (2004-41:201 EM (2004-41:2004 EM (2004-41:2004 EM (2004-41:2004) compatibility

Council Directive on the approximation of the laws of the Member States related to electrical equipment designed for use within certain voltage limits 2006/95/EC

IEC 62109-1;2010 IEC 62109-2;2011

Teningen, November 30th 2012

Andreas Hoischen Head of BU LOB ISPV name, function Head of Product Angergyill Vincent Lin

This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the product shall be considered in detail.

SOLIVIA30EUT4TL EC. Ded en 2012B.doc

EC Declaration of Conformity

Delta Energy Systems (Germany) GmbH Tscheulinstr. 21, D - 79331 Teningen, Germany

EOE48010362 EOE48010364 Solar Inverter for Grid operation SOLWIA15EUG4TL SOLWIA20EUG4TL

description:

Producer. Address: Product Model The product described above in the form as delivered is in conformity with the provisions of the following European Directives:

2004/108/EG Council Directive on the approximation of the laws of the Member States relating to electromagnetic compatibility

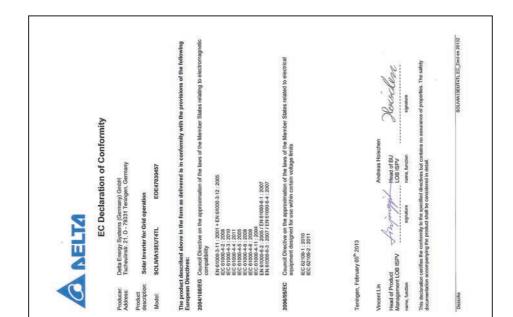
B GOTOL 1: 2009 A 1: 3009 B 1000-14: 2009 B 1000-14: 2000 B 1000-42: 2010 B 1000-42: 2010 B 1000-43: 2010 B 1000-43: 2010 B 1000-43: 2004 B 1000-43: 2004 B 1000-43: 2004

Council Directive on the approximation of the laws of the Member States related to electrical equipment designed for use within certain voltage limits 2006/95/EC

EN 62109-1; 2010 EN 62109-2; 2011

The product described above does also comply with the VDE 0124-100.

Teningen, July 7* 2012


Head of Product Management COB ISPV ...

Vincent Lin Name, Function

Head of BU LOB ISPV... Andreas Hoischen

This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the product shall be considered in detail.

SOLIVIA15_20EUG4TL EC_Deci en 20127, dec

Sämtliche aktuellen Zertifikate für die Solar-Wechselrichter SOLIVIA TL finden Sie auf unserer Website www.solar-inverter.com.

SUPPORT - EUROPE and AUSTRALIA

Austria

service.oesterreich@solar-inverter.com 0800 291 512 (Free Call)

Belgium

support.belgium@solar-inverter.com 0800 711 35 (Free Call)

Bulgaria

support.bulgaria@solar-inverter.com +421 42 4661 333

Czech Republic

podpora.czechia@solar-inverter.com 800 143 047 (Free Call)

Denmark

support.danmark@solar-inverter.com 8025 0986 (Free Call)

France

support.france@solar-inverter.com 0800 919 816 (Free Call)

Germany

service.deutschland@solar-inverter.com 0800 800 9323 (Free Call)

Greece

support.greece@solar-inverter.com +49 7641 455 549

Italy

supporto.italia@solar-inverter.com 800 787 920 (Free Call)

The Netherlands

ondersteuning.nederland@solar-inverter.com 0800 022 1104 (Free Call)

Poland

service-pvs@delta-es.pl +48 22 335 2619

Portugal

suporte.portugal@solar-inverter.com +49 7641 455 549

Slovakia

podpora.slovensko@solar-inverter.com 0800 005 193 (Free Call)

Slovenia

podpora.slovenija@solar-inverter.com +421 42 4661 333

Spain

soporto.espana@solar-inverter.com 900 958 300 (Free Call)

Switzerland

support.switzerland@solar-inverter.com 0800 838 173 (Free Call)

United Kingdom

support.uk@solar-inverter.com 0800 051 4281 (Free Call)

Other European countries

support.europe@solar-inverter.com +49 7641 455 549

Australia

support.australia@solar-inverter.com +61 3 9543 3053

